• Title/Summary/Keyword: Array Type Probe

Search Result 45, Processing Time 0.023 seconds

4 Electrical Resistivity Probe for Investigating soft offshore soils (해안연약 지반 조사를 위한 4전극 전기비저항 프로브)

  • Kim, Joon-Han;Yoon, Hyung-Koo;Bae, Myeong-Ho;Jung, Soon-Hyuck;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.464-475
    • /
    • 2009
  • Electrical resistivity can be used for porosity estimation. In order to improve previously developed ERCP(Electrical Resistivity Cone Probe), 4ERP(4 Electrical Resistivity Probe), which has Wenner array at the tip of probes, has been developed. In properties of current flow Wenner array measures electrical properties of undisturbed area during penetration and relatively correct measurements are guaranteed without polarization. Furthermore, Wenner array equation can estimate electrical resistivity without extra calibration. 4ERP is developed into 2 types, penetration and fixation. Penetration type has wedge-shaped tip. Considering disturbance minimization, fixed type has plane tip. Fixed type 4ERP in consolidation cell measure electrical resistivity increment along porosity decrease, and penetration type 4ERP measured resistivity profile along the depth in chamber. Applying Archie's law, porosity profile was estimated with electrical resistivity. The tests result suggests that 4ERP can be new site investigation equipment with little disturbance.

  • PDF

Design and Array Signal Suggestion of Array Type Pulsed Eddy Current Probe for Health Monitoring of Metal Tubes (금속배관 건전성 감시를 위한 배열형 펄스와전류 탐촉자의 설계 및 배열신호 제안)

  • Shin, Young Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.291-298
    • /
    • 2015
  • An array type probe for monitoring metal tubes is proposed in this paper which utilizes peak value and peak time of a pulsed eddy current(PEC) signal. The probe consists of an array of encircling coils along a tube and the outside of coils is shielded by ferrite to prevent source magnetic fields from directly affecting sensor signals since it is the magnetic fields produced by eddy currents that reflect the condition of metal tubes. The positions of both exciter and sensor coils are consecutively moved automatically so that manual scanning is not necessary. At one position of send-receive coils, peak value and peak time are extracted from a sensor PEC signal and these data are accumulated for all positions to form an array type peak value signal and an array type peak time signal. Numerical simulation was performed using the backward difference method in time and the finite element method for spatial analysis. Simulation results showed that peak value increases and the peak appears earlier as the defect depth or length increases. The proposed array signals are shown to be excellent in reflecting the defect location as well as variations of defect depth and length within the array probe.

Development of Human Papillomavirus DNA Array by Using Lateral Flow Membrane Assay (Lateral Flow Membrane를 이용한 인유두종 바이러스 DNA Array의 개발)

  • Kim, Ki-Whang;Lee, Hyung-Ku;Cho, Hong-Bum
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.346-351
    • /
    • 2008
  • This study develops DNA array which can detect specific sequence of human papilomavirus (HPV) by using lateral flow membrane assay which is usually used for point of care test including pregnant diagnosis. Principle of HPV DNA array is as follow; fixing DNA probe which is peculiar to HPV type 6, 11, 16, 18, 31, 45 on a surface of lateral flow membrane and inducing hybridization response between probe and HPV PCR products which is obtained by using biotin-labeled MY09/l1 primers. And then, we can see the result of DNA hybridization that streptavidin labelled colloidal gold is responded with hybrid biotin. Lateral flow membrane array developed in this study confirms major HPV type economically and conveniently compared with existing HPV DNA chip method.

Detection of SNP Using Microelectrode Array Biochip (마이크로전극어레이형 바이오칩을 이용한 SNP의 검출)

  • Choi, Yong-Sung;Kwon, Young-Soo;Paek, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.845-848
    • /
    • 2004
  • High throughput analysis using a DNA chip microarray is powerful tool in the post genome era. Less labor-intensive and lower cost-performance is required. Thus, this paper aims to develop the multi-channel type label-free DNA chip and detect SNP (Single nucleotide polymorphisms). At first, we fabricated a high integrated type DNA chip array by lithography technology. Various probe DNAs were immobilized on the microelectrode array. We succeeded to discriminate of DNA hybridization between target DNA and mismatched DNA on microarray after immobilization of a various probe DNA and hybridization of label-free target DNA on the electrodes simultaneously. This method is based on redox of an electrochemical ligand.

  • PDF

Design of U-slot Array for OCS Base Station (PCS 기지국용 U-슬롯 어레이 안테나 설계)

    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.117-124
    • /
    • 2001
  • In this paper, the design of a U-slot array antenna for PCS base station has been implemented and studied. The U-slot antenna is a single layer type with an antenna volume smaller but a bandwidth lager than the designs utilizing parasitic patches, which exceed 17 % bandwidth, for the probe fed case. Designed U-slot array antenna has stable radiation patterns and an average gain above 12 dB across the PCS frequency band. In this paper, through the designing of a U-slot array antenna, we have presented the availability for PCS base station antenna.

  • PDF

SNP Detection of Arraye-type DNA Chip using Electrochemical Method (전기화학적 방법에 의한 신규 바이오칩의 SNP 검출)

  • 최용성;권영수;박대희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.410-414
    • /
    • 2004
  • High throughput analysis using a DNA chip microarray is powerful tool in the post genome era. Less labor-intensive and lower cost-performance is required. Thus, this paper aims to develop the multi-channel type label-free DNA chip and detect SNP (Single nucleotide polymorphisms). At first, we fabricated a high integrated type DNA chip array by lithography technology. Various probe DNAs were immobilized on the microelectrode array. We succeeded to discriminate of DNA hybridization between target DNA and mismatched DNA on microarray after immobilization of a various probe DNA and hybridization of label-free target DNA on the electrodes simultaneously. This method is based on redox of an electrochemical ligand.

Fabrication of Depth Probe Type Semiconductor Microelectrode Arrays for Neural Recording Using Both Dry and wet Etching of Silicon (실리콘 건식식각과 습식식각을 이용한 신경 신호 기록용 탐침형 반도체 미세전극 어레이의 제작)

  • 신동용;윤태환;황은정;오승재;신형철;김성준
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.145-150
    • /
    • 2001
  • 대뇌 피질에 삽입하여 깊이에 따라 신경 신호를 기록하기 위한 탐침형 반도체 미세전극 어레이(depth-type silicon microelectrode array, 일명 SNU probe)를 제작하였다. 붕소를 확산시켜 생성된 고농도 p-type doping된 p+ 영역을 습식식각 정지점으로 사용하는 기존의 방법과 달리 실리콘 웨이퍼의 앞면을 건식식각하여 원하는 탐침 두께만큼의 깊이로 트렌치(trench)를 형성한 후 뒷면을 습식식각하는 방법으로 탐침 형태의 미세 구조를 만들었다. 제작된 반도체 미세전극 어레이의 탐침 두께는 30 $\mu\textrm{m}$이며 실리콘 건식식각을 위한 마스크로 6 $\mu\textrm{m}$ 두께의 LTO(low temperature oxide)를 사용하였다. 탐침의 두께는 개발된 본 공정을 이용해서 5~90 $\mu\textrm{m}$ 범위까지 쉽게 조절할 수 있었다. 탐침의 두께를 보다 쉽게 조절할 수 있게 됨에 따라 여러 신경조직에 필요한 다양한 구조의 반도체 미세전극 어레이를 개발할 수 있게 되었다. 본 공정을 이용해서 개발된 4채널 SUN probe를 사용하여 흰쥐의 제1차 체감각 피질에서 4채널 신경 신호를 동시에 기록하였으며, 전기적 특성검사에서 기존의 탐침형 반도체 미세전극, 텅스텐 전극과 대등하거나 우수한 신호대 잡음비(signal to noise ratio, SNR)특성을 가짐을 확인하였다.

  • PDF

Fabrication of Depth-probe type Silicon Microelectrode array for Neural signal Recording (신경신호기록용 탐침형 반도체 미세전극 어레이의 제작)

  • Yoon, T.H.;Hwang, E.J.;Shin, D.Y.;Kim, S.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.147-148
    • /
    • 1998
  • In this paper, we developed the process for depth-probe type silicon microelectrode arrays. The process consists of four mask steps only. The steps are for defining sites, windows, and for shaping probe using plasma etch from above, and for shaping using wet etch from below, respectively. The probe thickness is controlled by dry etching, not by impurity diffusion. We used gold electrodes with a triple dielectric system consisting of oxide/nitride/oxide. The shank of the probe taper from 200um to tens of urn tip and has 30 um thickness.

  • PDF

Plasma Uniformity Analysis of Inductively Coupled Plasma Assisted Magnetron Sputtering by a 2D Voltage Probe Array

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.23 no.4
    • /
    • pp.161-168
    • /
    • 2014
  • A real-time monitoring of immersed antenna type inductively coupled plasma (ICP) was done with a homemade 2 dimensional voltage probe array to check the uniformity of the plasma. Measured voltage values with a high impedance voltmeter are close to the floating potential of the plasma. As the substrate carrier was moving into a magnetron sputtering plasma diffusive from a $125mm{\times}625mm$ size cathode, measured results showed reliably separation of plasma into the upper and lower empty space over the carrier. Infra red thermal imaging camera was used to observe the cross corner effect in situ without eroding a target to the end of the usage. 3 dimensional particle trace model was used to analyze the magnetron discharge's behavior.

SNP Detection of Biochip Using Electrochemical System (전기화학적 방법에 의한 바이오칩의 SNP 검출)

  • Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2128-2130
    • /
    • 2004
  • High throughput analysis using a DNA chip microarray is powerful tool in the post genome era. Less labor-intensive and lower cost-performance is required. Thus, this paper aims to develop the multi-channel type label-free DNA chip and detect SNP (Single nucleotide polymorphisms). At first, we fabricated a high integrated type DNA chip array by lithography technology. Various probe DNAs were immobilized on the microelectrode array. We succeeded to discriminate of DNA hybridization between target DNA and mismatched DNA on microarray after immobilization of a various probe DNA and hybridization of label-free target DNA on the electrodes simultaneously. This method is based on redox of an electrochemical ligand.

  • PDF