• Title/Summary/Keyword: Array Shape

Search Result 431, Processing Time 0.03 seconds

Investigation and Analysis on the Surface Morphology of Roof-Top Photovoltaic System (평지붕 설치 태양광시스템의 표면형태 조사·분석)

  • Lee, Eung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.4
    • /
    • pp.57-65
    • /
    • 2016
  • Domestic photovoltaic system for roof-top is installed towards the south at an angle of 20 to 35 degrees and the shape of PV array is divided into two kinds; a plane shape and a curved shape. This paper aims to understand an actual condition of PV facility and strengths and weaknesses of support structure production and installation and to consider the best PV surface shape by analyzing theoretical logics of these two surface shapes and architectural perspective-based realistic case studies. This study targeted 98 facilities including common houses, public institutions and education institutions. In common houses, all of 59 PV facilities have a plane surface. In public institutions, 7 of 15 PV facilities have a curved array surface and 8 PV facilities have a plane surface. In education institutions, also, 14 of 24 PV facilities have a plane array surface and 10 PV facilities have a curved surface. Most of 98 facilities have a flat roof supporting shape. However, it was found that the curved shape wasn't positive for PV generation due to the change of radial density and it was at least 10 % more expensive to produce its structure. Also, domestic general large single-plate PV facilities have problems of harmony with buildings and wind load. Therefore, it is considered that for fixed-type roof-top PV, a plane PV array shape is good for optimum generation and economic efficiency and a parallel array structure on the roof surface is favorable to wind load and snow load without being a hindrance to the building facade.

Iterative Polynomial Fitting Technique for the Nonlinear Array Shape Estimation (비선형 선배열 형상 추정을 위한 반복 다항 근사화 기법)

  • 조요한;조치영;서희선
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.8
    • /
    • pp.74-80
    • /
    • 2001
  • Because of ocean waves, swell, steering corrections, etc, the hydrophones of a towed array will not live along a straight line. However the degradation of bearing estimation performance occurs when beamforming is carried out on the hydrophone outputs of an acoustic towed array which is not straight. So it is required to estimate the shape of the array for the improved beamformer output. In this paper, an iterative array shape estimation technique is presented, which is based on the use of the least squares polynomial fitting to the data from heading sensors. The estimation error and the influence of deformations on the performance of the conventional beamformer output are investigated. Finally, the suggested method is applied to the real system in order to investigate the applicability.

  • PDF

The Effect of Reference Mic. Array Shape on MUSIC and Beamforming Methods in Acoustical Holography (음향 홀로그래피에서 기준 마이크로폰 어레이가 빔형성 방법과 다중 신호 분리 방법에 미치는 영향)

  • 이원혁;이명준;강연준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1003-1008
    • /
    • 2001
  • In beamforming method, source positions are predicted by MUSIC (Multiple Signal Classification) power method and composite sound fields can then be decomposed into each partial field by beamforming, detenninistically without restriction of the distance between reference microphones and sources. However, reference microphone array shape is important in both MUSIC and beamforming method. Thus the present paper describes the effect of the reference microphone array shape.

  • PDF

Psychophysical Experiment for Shape Recognition by Vibratory Tactile Stimulated Array (진동자극배열에 의한 형상 인식의 정신물리학적 실험)

  • Yoon Myoung-Jong;Kim Nam-Gyun;Yu Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.943-949
    • /
    • 2005
  • For the psychophysical experiment of tactile perception of shapes, experimental system consists of vibrator, tactile stimulation array, measurement and control system is designed and prepared. The psychophysical experiment for the tactile perception of shape is carried out by the estimation of the subject group. Through the experiment the threshold of tactile perception to multi-stimuli with some line shape is obtained. Also the appropriate tactile stimulus intensity and frequency of the tactile stimulation array to recognize arbitrary shapes effectively are derived and discussed.

Comparative study of the pulse shape discrimination (PSD) performance of pixelated stilbene and plastic scintillator (EJ-276) arrays for a coded-aperture-based hand-held dual-particle imager

  • Jihwan Boo ;Manhee Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1677-1686
    • /
    • 2023
  • As the demand for the detection of special nuclear materials (SNMs) increases, the use of imaging instruments that can sensitively image both gamma-ray and neutron signatures has become necessary. This study compared the pulse shape discrimination (PSD) performance of gamma/neutron events when employing either a pixelated stilbene or a plastic (EJ-276) scintillator array coupled to a silicon photomultiplier (SiPM) array in a dual-particle imager. The stilbene array allowed a lower energy threshold above which neutron and gamma-ray events can be clearly distinguished. A greater number of events can, therefore, be used when forming both gamma-ray and neutron images, which shortens the time required to acquire the images by nearly seven times.

A Method for Extracting Shape and Position of an Object using Partial M-array

  • Kaba, K.;Kashiwagi, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.262-265
    • /
    • 1999
  • This paper describes a new method for object extraction necessary for image tracking systems. The extraction method which this paper proposes here is that an M-array is set between a camera and the object and the obtained image including the object and M-array is pro-cessed for extracting the object. The image processing utilizes a characteristic of M-array which is robust to noise. When an M-array is overlapped on the object in background image, the object woud have a part of M-array, which is detected by use of partial correlation between the mosaic image of M-array and the standard M-array. Thus the shape and position of the object are extracted by extracting a common domain of width of high correlation value. Experiments are carried out by using an actual photo of Kumamoto city taken from an airplane as background, and by use of a rectangular and circular object. The results of experiment show a wide application of this method for practical image tracking systems.

  • PDF

Performance Analysis of the Array Shape Estimation Methods Based on the Nearfield Signal Modeling (근거리 신호 모델링을 기반으로 한 어레이 형상 추정 기법들의 성능 분석)

  • Park, Hee-Young;Lee, Chung-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.221-228
    • /
    • 2008
  • To estimate array shape with reference sources in SONAR systems, nearfield signal modeling is required for the reference sources near a towed array. Array shape estimation method based on the nearfield signal modeling generally exploits the spatial covariance matrix of the received reference sources. Among those method, nearfield eigenvector method uses the eigenvector corresponding to the maximum eigenvalue as a steering vector of the reference source. In this paper, we propose a simplified subspace fitting method based on the nearfield signal modeling with spherical wave modeling. Furthermore, we analyze performance of the array shape estimation methods based on the nearfield signal modeling for various environments. The results of the numerical experiments indicate that the simplified subspace fitting method and the nearfield eigenvector method with single reference source shows almost similar performance. Furthermore, the simplified subspace fitting method with 2 reference sources consistently estimates the shape of the array regardless of the incident angle of the reference sources, whereas the nearfield eigenvector method cannot apply for the case of 2 reference sources.

Development of Aspheric Microlens Array to Improve the Properties of Multi Optical Probes (다중 광 프로브 특성 향상을 위한 비구면 마이크로렌즈 어레이의 개발)

  • Min, J.;Kim, H.;Choi, M.;Kim, B.;Kang, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.104-107
    • /
    • 2007
  • An aspheric microlens array to improve the properties of multi optical probes was designed and fabricated. To generate multi optical probes with good qualities, a microlens array with the minimum spherical aberration was designed by ray tracing. Using the reflow process, a master pattern of aspheric microlens array was made and finally with the ultraviolet-imprinting (UV-imprinting) method, the aspheric microlens array was replicated. The reflow condition was optimized to realize the master pattern of the microlens array with the designed aspheric shape. The intensity distribution of the optical probes at the focal plane showed a diffraction-limited shape.

  • PDF

Fabrication Method of 3D Feed Horn Shape MEMS Antenna Array Using MRPBI(Mirror Reflected Parallel Beam Illuminator) with Inclined X-Y-Z Stage (MRPBI를 이용한 3D Feed Horn Shape MEMS Antenna Array의 제조)

  • Park, Jong-Yeon;Kim, Kun-Tae;Moon, Sung;Pak, Jung-Ho;Park, Jong-Oh
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1914-1917
    • /
    • 2001
  • 3D Feed Horn Shape MEMS Antenna Array는 적외선 이미지 소자 또는 Tera hertz band 등에서 많은 응용을 할 수 있는 장점을 가진 MEMS 구조체 이다. 하지만 일반적인 MEMS 공정을 이용해서 3D Feed Horn Shape MEMS antenna array를 구현하기는 적합하지 않았다. 본 논문에서는 마스크와 웨이퍼가 일체 된 형태의 경사된 척이 초 저속으로 회전하면서 노광을 할 수 있는 새로운 방식과 미러 반사구조를 이용해서 평행광을 얻을수 있는 노광장치 (MRPBI : Mirror Reflected Parallel Beam Illuminator) System제작방법을 제안하였다. 3D Feed Horn Shape MEMS Antenna의 구조적인 high apect ratio의 특성에 의해서 SU-8과 PMER Negative Photo resist를 이용한 기본적인 실험을 통해 3D 구조체의 구현 가능성을 증명하였다. 또한 Microbolometer의 성능향상을 위한 이론적인 3D MEMS Antenna Model들을 HFSS(High Frequency Structure Simulator)을 이용해서 그 최적구조를 제안하고 3D MEMS Antenna Gain 값을 비교 분석하였다.

  • PDF

Shape Optimization Design of the Knuckle using the Orthogonal Array and the Finite Element Analysis (직교배열표와 유한요소해석을 이용한 너클의 형상최적설계)

  • 박영철;이권희;이동화;이강영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.138-144
    • /
    • 2003
  • Recently, the weight reduction of vehicle influences its environment problems and performances. It is a trend that a lot of parts have been currently changed to an aluminum alloy from steel materials. In this study, the shape optimization using an orthogonal array is performed to determine the design of the knuckle which is a part of suspension system. With the material of the weight reduction was achieved by satisfying the constraints of a strength requirement. The orthogonal array of $L_{18}$ is introduced to find the optimum design variables that considers the shape of the knuckle. The characteristic function composed of the objective and the construct is defined to the feasibility. Comparing to the weight of the initial design with steel materials that of optimum design with aluminum alloy material is reduced by 60%.