• Title/Summary/Keyword: Array Data

Search Result 1,623, Processing Time 0.032 seconds

A Design and Implementation of Functional Array for Improvement of the Traversal Time (탐색시간의 개선을 위한 함수형 배열의 설계 및 구현)

  • Ju, Hyeong-Seok;Yu, Won-Hui
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.5
    • /
    • pp.1262-1272
    • /
    • 1996
  • Pure functional languages have the referential transparency feature sothat all objects cannot be updated destuctively. Once an aggregated data structure such as array is updated, both the original and newly updated array must be preserved to maintain reverential transparency. Thus, it is required to develop an efficient mechanism with which can reduce the maintenance cost while maintaining referential transparency for whole data. This study is to suggest a functional array to solve the problem, and them test it. For that, the proposed mechanism was implemented on a combinator graph reduction machine. The result shows that proposed mechanism reduces traversal time for array operations. Also, updating all versions and accessing the recent version are achieved in constant time without reconstruction of updated data in execution time.

  • PDF

Design and Development of Asymmetry Glass Array Lens (비축대칭 Glass Array Lens의 설계 및 개발)

  • Park, Soon-Sub;Hwang, Yeon;Lee, Ki-Young;Kim, Geon-Hee;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.39-46
    • /
    • 2008
  • Asymmetric glass lens core for portable projection optic system was designed and simulated. And it was machined by newly developed non-rotational ultra precision grinding method. With the designed lens data which optimized for multi-collimation, we generated the we core surface data. Mold pressing conditions analyzed by FEM. In the machining process, ground profile errors were compensated based on measured data, minimized feed rate and depth of cut. The deviations of machined core profile were acceptable level for glass mold press. Mold pressed glass array lens was coated with $SiO_2\;and\;Ta_2O_5$ for anti-reflection.

Performance Evaluation of DC-Suppression GS Coding for the Holographic Data Storage Using Integer Programming Models (정수계획법 모형을 이용한 홀로그래픽 저장장치의 DC-억압 GS코딩의 성능평가)

  • Park, Taehyung;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.650-655
    • /
    • 2013
  • For the DC-free encoding of source data, the Guided Scrambling (GS) technique is widely used as multi-mode coding in the optical data storage system. For DC-suppression GS coding in the holographic data storage system, the conservative array and balanced coding criteria are proposed. In this paper, equivalent integer programming models are developed to determine the optimal control bits for the minimum digital sum value (MDSV), conservative array, and balanced coding criteria. Using the proposed integer programming models, we compare the performance of GS encoding for the various combination of control bit/array sizes and scrambling polynomials.

Signal subspace comparison between Physical & synthesized array data in echo imaging

  • Choi, Jeong-Hee
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.262-267
    • /
    • 1998
  • In Synthetic Aperture Radar(SAR) imaging, the echoed data are collected by moving radar's position with respect to the target area, and this operation actually gives effect of synthesizing aperture size, which in turn gives better cross range resolution of reconstructed target scene. Among several inversion scheme for SAR Imaging, we uses an inversion scheme which uses no approximation in wave propagation analysis, and try to verify whether the collected data with synthesized aperture actually gives the same support as that with physical aperture in the same size. To do this, we make a signal subspace comparison of two imaging models with physical and synthesized arrays, respectively. Theoretical comparison and numerical analysis using Gram-Schmidt procedures had been performed. The results showed that the synthesized array data fully span the physical array data with the same system geometry and strongly support the proposed inversion scheme valuable in high resolution radar imaging.

  • PDF

An alternative procedure for parameter design using desirability function in combined array (통합배열에서 기대함수를 이용한 파라미터설계 대체방안)

  • Kwon, Yong Man
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1263-1272
    • /
    • 2016
  • Product array approach which is used in the Taguchi parameter design has a number of advantages by considering the noise factor. However, a disadvantage of this method is that it requires an excessively large number of experiments. So combined array approach have been proposed to reduce the number of experiments. Taguchi has used the signal-to-noise ratio to find the optimum conditions in the Taguchi parameter design. In analyzing the data from the parameter design various problems tends occur by using an SN. In this paper, we propose an alternative solution for reducing the number of experiments without depending on the signal-to-noise ratio to overcome the shortcomings of the parameter design. Two examples illustrate this procedure in the two different experimental design (product array, combined array) approaches.

The Installation of Chul-Won Seismo-Acoustic Array (철원 지진-공중음파 관측망 설치)

  • ;;;;;;;Brian stump;Christ Hayward
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.52-57
    • /
    • 1999
  • Korea Earthquake Monitoring System(KEMS) in the Korea Institute of Geology Mining and Materials(KIGAM) as detected more than 1000 events since the end of 1998. But not all events are interpreted as earthquakes because many events are concentrated on daytime. It strongly implies that in addition to earthquake these events include artificial effects such as industrial blasting. Before the determination of eathquake charactertistics in the korean peninsula it is necessary to discriminate the detected events as earthquakes or artificial events. For the discriminant study KIGAM and SMU(Southern Methodist University) installed a triangular four-element 1-km aperture seismo-acoustic array at Chul-Won area northeast of Seoul Korea. Each array element includes a GS-13 seismometer in the bottom of borehole and a Validyne DP250-14 microbarometer sensor mounted inside of the borehole 1,2 meter deep connected to a 11 arm radial array of 10m porous soaker hoses. This array introduce the use of 2.4-GHz radios for inter-array self-contained solar-charged power system and GPS time-keeping system. A 24-bit digital data acquisition system performs 40 SPS in the infrasound and seismometer data. Velocity and direction of wind and temperature are also measured at hub site and included to the data stresam. This seismo-acoustic array will be used to identify and locate associated with industrial blasting and these identified and located events will be applied to form a ground truth database useful to assist the other development of discriminant studies.

  • PDF

Total Activity Estimation of Hippocampal Slice Using Multi-Electrode Array (Multi-Electrode Array를 이용한 뇌 해마의 Total Activity 추산)

  • Lee, Jeong-Chan;Kim, Ji-Eun;Cho, Chung-Yearn;Son, Min-Sook;Park, Kyung-Mo;Park, Ji-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.409-417
    • /
    • 2006
  • Research on neural circuit is a difficult area due to complexity and inaccessibility. Due to recent developments, the research using multi-electrode array of cells or tissues has become an important research area. However, there are some difficulties to decode the submerged meaning from huge and complex neural data. Moreover, it needs a harmonic collaboration between informatics and bioscience. In this paper, we have developed a custom-designed signal processing technique for multi-electrode array measured neural responses induced by electrical stimuli to the hippocampal tissue slices of the rat brain. The raw data from hippocampal slice using the multi-electrode array system were saved in a computer. Then we estimated characteristic points in each channel and calculated the total activity. To estimate the points, we used the Polynomial Fitting Approximation Method. Using the calculated total activity, we could provide the histogram or pseudo-image matrix to help interpretation of results.

A Comparative Study on Optimization Procedures to Robust Design (로버스트설계에서 최적화방안에 대한 비교 연구)

  • Kwon, Yong-Man;Mun, In-Suk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.1
    • /
    • pp.65-72
    • /
    • 2000
  • Robust design is an approach to reducing performance variation of quality characteristic values in quality engineering. Taguchi parameter design has a great deal of advantages but it also has some disadvantages. The various research efforts aimed at developing alternative methods. In the Taguchi parameter design, the product-array approach using orthogonal arrays is mainly used. However, it often requires an excessive number of experiments. An alternative approach, which is called the combined-array approach, was suggested by Welch et. al. (1990) and studied by others. In this paper we make a comparative study on optimization procedures to robust design in the two different experimental design(product array, combined array) approaches the Mough the Monte Carlo simulation.

  • PDF

Development of an Illumination Measurement Device for Color Distribution Based on a CIE 1931 XYZ Sensor

  • Son, Do-Ky;Cho, Eun-Byeol;Moon, In-Kyu;Park, You-Sang;Lee, Chung-Ghiu
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.44-51
    • /
    • 2011
  • In this paper, an easy-to-use measurement device for illumination distribution is developed. The device consists of a sensor array module, a control module, and a PC interface. The sensor array module incorporates CIE 1931 color sensors and the ARM-based 96 MHz microcontroller in the control module for measurement and data processing. The sensor array module contains 64 color sensors arranged in a $16{\times}4$ array. The sensitivity of the sensor array module can be adjusted depending on the illumination level to be measured. The measurement data and control signals are exchanged via USB 2.0 standard. To demonstrate the performance of the device, the illumination distribution is measured for colors of red, green, and blue and is graphically shown. The device can be used for measurement of the illumination distribution, design and adjustment of LED illumination.

Power-Efficient DCNN Accelerator Mapping Convolutional Operation with 1-D PE Array (1-D PE 어레이로 컨볼루션 연산을 수행하는 저전력 DCNN 가속기)

  • Lee, Jeonghyeok;Han, Sangwook;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.2
    • /
    • pp.17-26
    • /
    • 2022
  • In this paper, we propose a novel method of performing convolutional operations on a 2-D Processing Element(PE) array. The conventional method [1] of mapping the convolutional operation using the 2-D PE array lacks flexibility and provides low utilization of PEs. However, by mapping a convolutional operation from a 2-D PE array to a 1-D PE array, the proposed method can increase the number and utilization of active PEs. Consequently, the throughput of the proposed Deep Convolutional Neural Network(DCNN) accelerator can be increased significantly. Furthermore, the power consumption for the transmission of weights between PEs can be saved. Based on the simulation results, the performance of the proposed method provides approximately 4.55%, 13.7%, and 2.27% throughput gains for each of the convolutional layers of AlexNet, VGG16, and ResNet50 using the DCNN accelerator with a (weights size) x (output data size) 2-D PE array compared to the conventional method. Additionally the proposed method provides approximately 63.21%, 52.46%, and 39.23% power savings.