• Title/Summary/Keyword: Arousal-Valence 평면

Search Result 3, Processing Time 0.016 seconds

A research on the emotion classification and precision improvement of EEG(Electroencephalogram) data using machine learning algorithm (기계학습 알고리즘에 기반한 뇌파 데이터의 감정분류 및 정확도 향상에 관한 연구)

  • Lee, Hyunju;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.27-36
    • /
    • 2019
  • In this study, experiments on the improvement of the emotion classification, analysis and accuracy of EEG data were proceeded, which applied DEAP (a Database for Emotion Analysis using Physiological signals) dataset. In the experiment, total 32 of EEG channel data measured from 32 of subjects were applied. In pre-processing step, 256Hz sampling tasks of the EEG data were conducted, each wave range of the frequency (Hz); Theta, Slow-alpha, Alpha, Beta and Gamma were then extracted by using Finite Impulse Response Filter. After the extracted data were classified through Time-frequency transform, the data were purified through Independent Component Analysis to delete artifacts. The purified data were converted into CSV file format in order to conduct experiments of Machine learning algorithm and Arousal-Valence plane was used in the criteria of the emotion classification. The emotions were categorized into three-sections; 'Positive', 'Negative' and 'Neutral' meaning the tranquil (neutral) emotional condition. Data of 'Neutral' condition were classified by using Cz(Central zero) channel configured as Reference channel. To enhance the accuracy ratio, the experiment was performed by applying the attributes selected by ASC(Attribute Selected Classifier). In "Arousal" sector, the accuracy of this study's experiments was higher at "32.48%" than Koelstra's results. And the result of ASC showed higher accuracy at "8.13%" compare to the Liu's results in "Valence". In the experiment of Random Forest Classifier adapting ASC to improve accuracy, the higher accuracy rate at "2.68%" was confirmed than Total mean as the criterion compare to the existing researches.

Wavelet-based Statistical Noise Detection and Emotion Classification Method for Improving Multimodal Emotion Recognition (멀티모달 감정인식률 향상을 위한 웨이블릿 기반의 통계적 잡음 검출 및 감정분류 방법 연구)

  • Yoon, Jun-Han;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1140-1146
    • /
    • 2018
  • Recently, a methodology for analyzing complex bio-signals using a deep learning model has emerged among studies that recognize human emotions. At this time, the accuracy of emotion classification may be changed depending on the evaluation method and reliability depending on the kind of data to be learned. In the case of biological signals, the reliability of data is determined according to the noise ratio, so that the noise detection method is as important as that. Also, according to the methodology for defining emotions, appropriate emotional evaluation methods will be needed. In this paper, we propose a wavelet -based noise threshold setting algorithm for verifying the reliability of data for multimodal bio-signal data labeled Valence and Arousal and a method for improving the emotion recognition rate by weighting the evaluation data. After extracting the wavelet component of the signal using the wavelet transform, the distortion and kurtosis of the component are obtained, the noise is detected at the threshold calculated by the hampel identifier, and the training data is selected considering the noise ratio of the original signal. In addition, weighting is applied to the overall evaluation of the emotion recognition rate using the euclidean distance from the median value of the Valence-Arousal plane when classifying emotional data. To verify the proposed algorithm, we use ASCERTAIN data set to observe the degree of emotion recognition rate improvement.

A Study on the analyzation method of EEG adapting Dataset (Dataset을 활용한 뇌파 데이터 분석 방법에 관한 연구)

  • Lee, HyunJu;Shin, DongIl;Shin, DongKyoo
    • Annual Conference of KIPS
    • /
    • 2014.04a
    • /
    • pp.995-997
    • /
    • 2014
  • 뇌파는 최근에 가장 많이 연구되고 있는 생체신호이다. 본 연구에서는 오픈 감정뇌파데이터인 DEAP Dataset를 활용한 데이터 분석 실험을 시행하였다. DEAP Dataset는 총 32개의 데이터이며, 32채널로 구성되어 있다. 전처리 과정에서는 디지털 필터인 IIR(Infinite Impulse Response) Filter를 사용하여 잡음을 제거하였고, 인공산물인 안구잡파(EOG: Electrooculograms) 제거에는 LMS(the Least Mean squares) 알고리즘을 사용하였다. 감정분류는 Valence-Arousal 평면을 사용하여 네 개의 감정으로 구분하였고, 분류 실험으로는 패턴인식 알고리즘인 SVM(support Vector Machine)를 사용하였다. 실험결과 SVM이 70%대의 결과를 도출하여 이전 실험결과보다 높은 정확도를 도출하였다.