• Title/Summary/Keyword: Aromatic constituent

Search Result 13, Processing Time 0.024 seconds

Tar Reforming for Biomass Gasification by Ru/$Al_2O_3$ catalyst (Ru/$Al_2O_3$ 촉매를 이용한 바이오매스 타르 개질 특성)

  • Park, Yeong-Su;Kim, Woo-Hyun;Keel, Sang-In;Yun, Jin-Han;Min, Tai-Jin;Roh, Seon-Ah
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.247-250
    • /
    • 2008
  • Biomass gasification is a promising technology for producing a fuel gas which is useful for power generation systems. In biomass gasification processes, tar formation often causes some problems such as pipeline plugging. Thus, proper tar treatment is necessary. So far, nickel (Ni)-based catalysts have been intensively studied for the catalytic tar removal. However, the deactivation of Ni-based catalysts takes place because of coke deposition and sintering of Ni metal particles. To overcome these problems, we have been using ruthenium (Ru)-based catalyst for tar removal. It is reported by Okada et al., that a Ru/$Al_2O_3$ catalyst is very effective for preventing the carbon deposition during the steam reforming of hydrocarbons. Also, this catalyst is more active than the Ni-based catalyst at a low steam to carbon ratio (S/C). Benzene was used for the tar model compound because it is the main constituent of biomass tar and also because it represents a stable aromatic structure apparent in tar formed in biomass gasification processes. The steam reforming process transforms hydrocarbons into gaseous mixtures constituted of carbon dioxide ($CO_2$), carbon monoxide (CO), methane ($CH_4$) and hydrogen ($H_2$).

  • PDF

Chemical properties and antioxidant activity of essential oils of Chrysanthemum morifolium Ramat. and Chrysanthemum indicum L. in Vietnam

  • Thi-Hoan Luong;Dang-Minh-Chanh Nguyen;Thi-Nga Trinh;Viet-Cuong Han;Woo-Jin Jung
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.367-374
    • /
    • 2022
  • In recent years, research into medicinal herbs with antioxidative activities has increased. Chrysanthemum morifolium and Chrysanthemum indicum are aromatic herb plants and that have long been used in traditional Vietnamese medicine. This study aims to evaluate the chemical compositions and antioxidative activities of essential oils hydrodistilled from the flower heads of C. morifolium and C. indicum. The chemical compositions of the essential oils were compared using gas chromatography/mass spectrometry (GC/MS) analysis. The antioxidative activity was determined and evaluated spectroscopically by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, metal chelating activity, reducing power, and total antioxidant capacity assays. According to the GC/MS results, chrysanthenone was predominant in the essential oils of both C. morifolium (64.14%) and C. indicum (32.02%). This is the first report of the identification of chrysanthenone as a major constituent of the essential oil of C. morifolium. Both Chrysanthemum oils were also revealed to possess antioxidant potential, exhibiting high antioxidative activities. In particular, the DPPH radical scavenging activities of the C. morifolium and C. indicum oils at a concentration of 100 mg/mL were 76.9 and 83.2%, respectively. The metal chelating values of C. morifolium and C. indicum were 0.85 and 0.76, whereas the reducing power values of that at 100 mg/mL were 0.76 and 0.71, respectively. This study provides the chemical properties of the essential oils of both C. morifolium and C. indicum grown in Vietnam and their potential antioxidant capacity.

Effects of Organic Matter Applications on General Components and Essential Oils in Codonopsis lanceolata $T_{RAUTV}$ (유기물(有機物) 종류(種類)에 따른 더덕 근(根)의 일반성분(一般成分)과 정유성분(精油成分) 변화(變化))

  • Lee, Seong-Phil;Kim, Sang-Kuk;Choi, Boo-Sull;Lee, Sang-Chul;Yeo, Soo-Kab
    • Korean Journal of Medicinal Crop Science
    • /
    • v.6 no.1
    • /
    • pp.21-27
    • /
    • 1998
  • This experiment was conducted to increase aromatics in roots of Condonopsis lanceolata by applications of organic matters. Fresh root wt. was increased by conifer/moss application to 79.1g per plant. Crude protein content was also higher at rice straw application than native soil application and crude saponin content was increased by conifer/moss application, but contents of crude fat, fiber and ash were not different in all treatments. Although contents of K, Ca, and Mg were increased by rice straw application, Fe, Mn, Zn, Na and Cu were not significantly different in all treatments, The highest free amino acid was arginine, it was increased by the application of fallen leaves and the highest yield (0,008%) of essential oils was obtained by conifer/moss application. As a result, to produce C. lanceolata plant showing higher quality and aromatic essential oils, it was considered that the most effective organic matter showing high yield and higher aromatic constituents was conifer/moss application of over 3M/T per 10a.

  • PDF