• Title/Summary/Keyword: Aroma compound

Search Result 86, Processing Time 0.036 seconds

Changes in aroma compounds of decaffeinated coffee beans (디카페인 커피 원두의 향기성분 변화)

  • Jin-Young Lee;Young-Soo Kim
    • Food Science and Preservation
    • /
    • v.30 no.3
    • /
    • pp.492-501
    • /
    • 2023
  • In this study, we wanted to understand the impact of different decaffeination processes on aroma compounds of coffee. Therefore, we analyzed differences in physical characteristics and volatile aroma compounds profiles of regular coffee (RC), Swiss water process decaffeinated coffee (SWDC), and supercritical CO2 decaffeinated coffee (SCDC) after roasting the coffee beans. The electronic nose analysis identified RC and SCDC as different groups which indicates that these groups volatile aroma compound compositions were different. The principal component analysis of volatile compound patterns identified using an electronic nose indicated that there was a large difference in volatile compounds between RC, which was not decaffeinated, and both decaffeinated SWDC and SCDC. The major aroma compounds of RC, SWDC and SCDC were propan-2-one and hexan-2-one which are ketone, and hexanal and (E)-2-pentenal which are aldehyde and 3-methyl-1-butanol which is an alcohol. After roasting, the composition of major volatile compounds appearing in the beans was similar, but the relative odor intensity was different. We identified 28 volatile aroma compounds from RC, SWDC, and SCDC using headspace-solid phase microextraction-gas chromatography/mass spectrometry (HS-SPME-GC/MS), and analyzed 10 major compounds that were present in high abundance, including furfural, 2-furanmethanol, 2,5-dimethylpyrazine, and 2-ethyl-3-methylpyrazine.

Volatile Compounds of Zanthoxylum piperitum A.P. DC.

  • Chung, Mi-Sook
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.529-532
    • /
    • 2005
  • Volatile compounds, isolated from Chopi (Zanthoxylum piperitum A.P. DC.) using steam distillation, were analyzed by gas chromatography/mass spectrometry-olfactometry (GC-MS-O). Forty-six volatile compounds, consisting of 12 hydrocarbons, 8 aldehydes, 5 esters, 12 alcohols, 4 ketones, 4 oxides and 1 acid, were tentatively identified from the essential oil of Chopi. Unidentified compounds constituted 7.2% of the total peak area. Limonene was the most abundant compound, followed by geranyl acetate, citronellal, cryptone and ${\beta}$-myrcene. In addition, aroma-active compounds, in particular citronellal and limonene, which are related to the citrus and Chopi flavors of Chopi essential oil, were detected. The aroma of Chopi essential oil had a score of 4.8 on the preference test (neither like nor dislike) and a score of 5.97 on the intensity test (slightly strong) using the 9-point hedonic scale.

Analysis of Aroma Components from Zanthoxylum

  • Chang, Kyung-Mi;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.669-674
    • /
    • 2008
  • Zanthoxylum schinifolium and Zanthoxylum piperitum A.P. DC. belong to the Rutaceae family and are perennial, aromatic, and medicinal herbaceous plants. In this study, their aroma compounds were isolated by steam distillation extraction using a Clevenger-type apparatus, and then further analyzed by gas chromatography (GC) and gas chromatograph/mass spectrometry (GC/MS). The yields of the essential oils from Z. schinifolium and Z. piperitum AP. DC. were 2.5 and 2.0%(w/w), respectively, and the color of their oils was quite similar, a pale yellow. From the distilled oil of Z. schinifolium, 60 volatile compounds which make up 87.24% of the total composition were tentatively identified, with monoterpenes predominating. $\beta$-Phellandrene (22.54%), citronellal (16.48%), and geranyl acetate (11.39%) were the predominantly abundant components of Z. schinifolium. In the essential oil of Z. piperitum AP. DC., 60 volatile flavor components constituted 94.78% of the total peak area were tentatively characterized. Limonene (18.04%), geranyl acetate (15.33%), and cryptone (8.52%) were the major volatile flavor compounds of Z. piperitum A.P. DC.

Dimensionless Henry's Constant and Liquid-Vapour Equilibrium of Rosemary Aroma Compounds (로즈마리 향기성분의 기-액 평형과 무차원 헨리의 상수)

  • Yoon, Hyang-Sik;Jeong, Heon-Sang;Min, Young-Kyoo
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.738-742
    • /
    • 2003
  • In order to estimate the mass transfer characteristics of absorption into alcohol solution of aroma compounds such as cineol, myrecene and pinene which are major aroma compounds of rosemary, dimensionless Henry's constant in 70% ethyl alcohol concentration and aroma concentration with different ethyl alcohol concentration were analyzed. From the results of measurement of vapor phase concentration of aroma compounds with different ethyl alcohol concentration, headspace concentrations of all of three aroma compounds were decreased as ethyl alcohol concentration increased. But those patterns were slightly different. Dimensionless Henry's constant equation (Hi) of cineol compound with ethyl alcohol concentration (x) was as follows: $Hi=(-5.75+x)/(-7017.6+257.3{\times}x)$. Dimensionless Henry's constants of cineol, myrecene and pinene in 1 atm, $25^{\circ}C$ and 70% ethyl alcohol concentration were 0.0058, 0.0182 and 0.0365, respectively.

Studies on the Aroma Components of Roasted and Ground Coffee (배전 및 원두 커피의 향기성분)

  • Baik, Hee-Jun;Ko, Young-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.15-18
    • /
    • 1996
  • Twenty different kinds of roasted and ground coffees, 9 domestic and 11 foreign coffee products, were analyzed using a headspace gas chromatographic technique. Among many aroma compounds, acetaldehyde, acetone, carbon disulfide, isobutylaldehyde, 2-methylfuran, 2-methylbutanol and isovaleraldehyde were mainly analyzed for aroma pattern. Roasting color was determined by Photovolt colorimeter. The average roasting color of the foreign coffee was 54 and 47 for domestic coffee. It means that color of the domestic coffee was darker than that of the foreign coffee. The correlation of coefficient between roasting color and 2-methylfuran was 0.712.

  • PDF

Characterization of Volatile Compounds in Low-Temperature and Long-Term Fermented Baechu Kimchi (묵은 배추김치의 휘발성 성분 특성)

  • Kim, Ji-Yun;Park, Eun-Young;Kim, Young-Suk
    • Journal of the Korean Society of Food Culture
    • /
    • v.21 no.3
    • /
    • pp.319-324
    • /
    • 2006
  • Volatile compounds in low-temperature and long-term fermented Baechu kimchi were extracted by high vacuum sublimation(HVS), and then analyzed by gas chromatography/mass spectrometry(GC-MS). A total of 62 compounds, including 7 sulfur-containing compounds, 8 terpenes, 5 esters, 8 acids, 15 alcohols, 2 nitrites, 2 ketones, 11 aliphatic hydrocarbons and 4 miscellaneous compounds, were found in low-temperature and long-term fermented Baechu kimchi. Among them, acetic acid and butanoic acid were quantitatively dominant. Aroma-active compounds were also determined by gas chromatography/olfactometry(GC-O) using aroma extract dilution analysis(AEDA). A total of 16 aroma-active compounds were detected by GC-O. Butanoic acid was the most potent aroma-active compound with the highest FD factor($Log_3FD$) followed by linalool, acetic acid, 2-vinyl-4H-1,3-dithin and 3-methyl-1-butanol. The major aroma-active compounds, such as acetic acid and butanoic acid, were related to sour and rancid or notes.

Influence of Freezing Rate on the Aroma Retention in a Freeze Drying System (동결건조 시스템에서 동결속도가 향미물질 보존에 미치는 영향)

  • Byun, Myung-Hee;Choi, Mi-Jung;Lee, Sung;Min, Sang-Gi
    • Food Science of Animal Resources
    • /
    • v.18 no.2
    • /
    • pp.176-184
    • /
    • 1998
  • The objective of this study was to investigate the effects of freezing rate on aroma retention and to examine the mechanism of aroma retention during freeze drying process. Our experiments were carried out with self-manufactured freeze-dryer. Gelatin gels (2% w / w, 80${\times}$20mm) containing diacetyl(2mg/ml) were frozen unidirectionally (Neumann's model) from the bottom at -45, -30, -20, and -15$^{\circ}C$ and followed with freeze-drying. Under the upper conditions we measured freezing rate and the change of temperature and pressure during freeze drying. Freeze-dried gelatins were cut horizontally into 5 mm thickness from the bottom measured and diacetly contents. Besides, we observed the effect of the relative humidity of the diacetyl contents freeze-dried gelatin during storage. The retained diacetyl content was increased at high freezing temperature and in order of 0∼5, 5∼10, 10∼15, 15∼20 mm section from the bottom of the sample. It was observed that the retained diacetyl content was high in 15∼20 mm section. The retained diacetyl content and freeze-dried gelatin stored in the condition of high relative humidity was decreased significantly but in the low relative humidity case, was it decreased in small amount. The results of our experiment resents that the low temperature freezing and low humidity storing condition is effective for preserving aroma compound in food.

  • PDF

Analysis of Significant Factors in the Flayer of Traditional Korean Soy Sauce (III) - Aroma Compound Analysis - (한국전통간장의 맛과 향에 관여하는 주요 향미인자의 분석(III) -향기성분 분석 -)

  • Park, Hyun-Kyung;Sohn, Kyung-Hee;Park, Ok-Jin
    • Journal of the Korean Society of Food Culture
    • /
    • v.12 no.2
    • /
    • pp.173-182
    • /
    • 1997
  • This study was carried out in order to investigate effective aroma components of Korean traditional soy sauce. Volatile aroma compounds were extracted by solvent extraction, TMS esterification of methyl acetate extracts and SDE, and analyzed by GC/MSD. 140 voltile aroma compounds were detected by three different extraction methods. Most abundant volatile compounds were acids and phenols and identified aldehydes, hydrocarbons, ketones, furans, furanone, alcohols, esters, nitrogen compounds, sulfur compounds and thiazoles, too. In the analytical sensory evaluation of soy sauce aroma, there were significant differences between each soy sauce sample in all test item. To sum up, Sweet odor was high in Kyupjang. Nutty odor and traditional soy sauce odor were similarly high in Kyupjang and high concentration soy sauce. Kyupjang had high score in overall odor preference than Chungiangs. The result of multiple regression of soy sauce odor characteristics and gas chromatography pattern demonstrated that offensive and sour odor was affected by octadecanoic acid. Contributive compounds to sweet odor were 1,2-benzenedicarboxylic acid and 3,6-dioxa-2,7-disilacotane. Benzoic acid 4-methyl ethyl ester and nonacotane were identified as major compounds of nutty odor. Contribu live variables of traditional soy sauce odor were benzoic acid 4-methyl ethyl ester and 9,12-octadecadienoic acid. The main factors of odor preference were 3-methyl pentanoic acid, acetic acid, 2,6-dimethyl heptadecane and 3,6-dioxa-2,7-disilacotane.

  • PDF

The Changes of Aroma in Wine Treated with Reverse Osmosis System (역삼투압 시스템으로 처리한 포도주의 향기성분 변화)

  • Lee, Seung-Ryong;Lee, Kyu-Hee;Chang, Kyu-Seob;Lee, Suk-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.17-24
    • /
    • 2000
  • Reverse osmosis (RO) system was applied to improve wine quality. General wine (GEN) and wines containing different sugar levels $24^{\circ}Brix$ (RO-24) and $24^{\circ}Brix$ (RO-28) by removing pure water using RO system without sugar addition on brewing method. And they were compared by wine aroma analysis. The preparing method of analysis was LLCE (liquid-liquid continuous extraction). And volatile aroma compounds of different wines were prepared for raw, and diluted materials in same proportion. The wine aromas were described by trained twelve panelists for QDA (quantitative descriptive analysis) and showed for FD (flavor dilution)-chromatogram. Consequently, overall acceptability of RO-28 showed better than that of other treatments. Aromas of RO-28 also were represented the high contents of positive aroma compounds such as ethanol and ethyl acetate, which were identified by GC-O and GC-MS.

  • PDF

Effects of barley roasting methods on the aroma characteristics of boricha (보리의 로스팅법에 따른 보리차의 향 특성)

  • Joung, Woo-Young;Kim, Su-Jeong;Kim, Byeong-Goo;Hurh, Byung-Serk;Baek, Hyung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.464-473
    • /
    • 2018
  • The objective of the current study was to evaluate the effects of roasting methods on volatile flavor compounds of boricha using solvent-assisted flavor evaporation-gas chromatography (GC)-mass spectrometry and GC-olfactometry. The barley roasting methods tested were air roasting (AR), drum roasting (DR), and air/drum roasting (ADR). Twenty, twenty-one, and eighteen aroma-active compounds were detected in the products of AR, DR, and ADR, respectively. Guaiacol (smoky), 2-acetylpyrazine (almond-like), and furfuryl alcohol (burnt sugar-like) were detected as high intensity aroma-active compounds. Intensities of most aroma-active compounds produced by the DR method were higher. On the other hand, aroma intensities of phenols produced by the AR method, such as guaiacol and 2-methoxy-4-vinylphenol (curry-like), tended to be stronger. Aroma characteristics of phenols are not considered to be desirable for boricha. Although roasting time for DR was longer than that for AR, DR may be an effective barley roasting method for enhancing desirable aroma characteristics of boricha.