• Title/Summary/Keyword: Armored Combat Vehicle

Search Result 12, Processing Time 0.024 seconds

Study on Improvement of Air Conditioning Units for Anti Aircraft Gun Wheeled Vehicle (차륜형 대공포 냉방장치 성능개선 연구)

  • Jeon, Ki-Hyun;Lee, Dong-Hui;Lee, Boo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1099-1103
    • /
    • 2013
  • A combat vehicle needs to have an air-conditioning unit. Accordingly, new combat systems have tended to apply an integrated heating, cooling, and ventilating system. The air conditioning unit used depends on the combat vehicle's purpose of use. In this study, we studied an air-conditioning unit for an armored combat vehicle as a special use and military specification and tried to improve the air-conditioning unit's performance.

Optimized Design of Air Controlling System in Air Defense Gun Systems of Wheeled Vehicle (차륜형 대공포의 냉방기 최적화 설계)

  • Jeon, Ki-Hyun;Lee, Boo-Hwan;Lee, Dong-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.1047-1051
    • /
    • 2013
  • A modern combat vehicle needs to have a separate air-conditioning unit, although new combat systems tend to employ an integrated heating, cooling, and ventilating system. In this study, we investigated an air conditioning unit for an armored combat wheeled vehicle as a special use and military specification and performed a case study of a unique military combat vehicle. By using Fluent software, we tried to determine a suitable air ducting method and its location in the armored combat vehicle. The results show that an air-conditioning unit is one of the best solutions for wheeled vehicles that are not equipped with a cooling unit for their crews, and it can be applied to similar types of armored vehicles.

Simulation of Rollover Crashes and Passenger Injury Assessment for a Wheeled Armored Vehicle (차륜형 전투차량 전복 시 승무원 안전성 확보를 위한 시뮬레이션 연구)

  • Lee, Gyung-Soo;Jung, Ui-Jin;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.385-391
    • /
    • 2014
  • A wheeled armored vehicle is a military vehicle that has been developed to enhance combat capabilities and mobility for the army. The wheeled armored vehicle has a high center of gravity, and it operates on unpaved and sloped roads. Therefore, this vehicle has a high risk of rollover crashes. To design the interior of the military vehicle, the crew's safety during rollover crashes is an important factor. However, actual vehicle tests for design are extremely expensive. In this paper, nonlinear dynamic analysis is performed to simulate the rollover crashes and the passenger injury is assessed for a wheeled armored vehicle. The scope of this research is the rollover condition, FE modeling of the wheeled armored vehicle and the dummy, arrangement of dummies, assessment of passenger injuries, and simulation model for rollover crashes.

Study on Improvement in Cooled Air Defense Gun System Including Closed Drum Basket (비개방형 포탑드럼바스켓을 가진 대공포체계의 냉방장치개선 연구)

  • Hwang, Boo Il;Lee, Dong Hui;Kim, Chi Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.109-113
    • /
    • 2015
  • Combat vehicles need an air-conditioning unit, although new combat systems tend to use an integrated system for heating, cooling, and ventilating. The specifications of an air-conditioning unit depend on the combat vehicle's purpose. It is difficult to send cooling air from the air-conditioning unit to a gun turret through the drum basket because the gun turret rotates and consists of a closed anti-aircraft shell magazine. In this study, we considered an air-conditioning unit for armored combat vehicle based on the special requirements and military specifications. We evaluated the performance of the air-conditioning unit despite the rotating gun turret through analysis and tests in terms of flow improvement compared to the previous model.

A Development of Component Vulnerability Analysis Program for Armored Fighting Vehicle using Criticality based on FMECA (FMECA 기반 위험도를 활용한 전차의 구성 부품별 취약성 분석 프로그램의 개발)

  • Hwang, Hun-Gyu;Kang, Ji-Won;Lee, Jang-Se
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1973-1980
    • /
    • 2015
  • The combat system has a different purpose depending on its mission. All functions of combat system are important, but, the components that related main functions for the purpose, are important than other components. Also, the hit probability of component is proportional to area of the component. Therefore, when we analyze vulnerability of combat system, to consider the importance and hit probability of component. Thus to improve reliability of combat system, we apply the analyzed result to design combat system. In this paper, we develop a vulnerability analysis program based on criticality which calculated from importance and hit probability of components by related researches. To do this, we propose a methodology to apply criticality of components, and define classification rates for calculating criticality based on FMECA. Additionally, we propose a technique of vulnerability analysis using criticality of components, and apply the proposed technique to develop and test the vulnerability analysis program for automation of analysis.

A Method for Reliability Analysis of Armored Fighting Vehicle using RBD based on Integrated Hit Probabilities of Crews and Components (통합 피격 확률 분석을 이용한 RBD 기반의 전차 신뢰도 분석 방법)

  • Hwang, Hun-Gyu;Kang, Ji-Won;Lee, Jang-Se
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.1040-1048
    • /
    • 2016
  • Recently, the studies of integrated reliability analysis for combat systems are actively progressing. Especially, the research of integrated reliability analysis is emphasized to overcome limitations of the previous studies. In this paper, we propose a calculation technique for integrated hit probability based on front and side hit probabilities that analyzed in previous studies to improve the time-effectiveness. Also, we find out the integrated reliability of each component based on the integrated hit probability which is calculated, and we propose the method which applied the reliability block diagram technique to analyze the whole combat system of the reliability by function kills. For verifying the proposed method, we applied the proposed method to armored fighting vehicle model. The proposed method considers crew which does not considered the element in the previous study and expects to enhance the accuracy of reliability analysis and the time-effectiveness compared with the previous study.

A Study on the Nondestructive Test Optimum Design for a Ground Tracked Combat Vehicle (지상궤도전투장비의 비파괴검사 최적설계방안에 대한 연구)

  • Kim, Byeong Ho;Seo, Jae Hyun;Gil, Hyeon Jun;Kim, Seon Hyeong;Seo, Sang Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.358-366
    • /
    • 2015
  • In this study, a nondestructive test (NDT) is performed to inspect the optimal design of a ground tracked combat vehicle for self-propelled artillery, tank, and armored vehicles. The minimum qualification required for personnel performing the NDT of a ground tracked combat vehicle was initially established in US military standards, and then applied to the Korean defense specifications to develop a ground tracked combat vehicle. However, the qualification standards of an NDT inspector have been integrated into NAS410 through the military and commercial specifications unification project that were applied in the existing aerospace/defense industry public standard. The design method for this study was verified by applying the optimal design to the liquid penetrant testing Al forging used in self-propelled artillery. This confirmed the reliability and soundness of the product.

The Impact of Failure Frequency Items on Availability and Operation Support Costs of Armored Vehicles (장갑차의 가용도와 운영유지비용에 미치는 고장 다빈도 품목의 영향성 분석)

  • Bong, Ju-Sung;Baek, Il-Ho;Kim, Min-Seop;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.8-15
    • /
    • 2021
  • The effects on system availability, operation, and support costs were analyzed using the M&S system (MPS). The failure frequency items of current armored vehicles were identified and the MTBF of the identified items was improved. The results of this study suggest that when we reduce the frequency of failure, the availability increases, and the operation and support costs decrease. By improving the reliability of the failure frequency items, it becomes possible to upgrade or develop the weapons systems. Through this study, we confirmed that improving reliability will enhance combat readiness and reduce operation and support costs.

A Development of Hit Probability-based Vulnerability Analysis System for Armored Fighting Vehicle using Fault Tree Analysis Technique (FTA 기법을 활용한 피격 확률 기반의 전차 취약성 분석 시스템 개발)

  • Hwang, Hun-Gyu;Yoo, Byeong-Gyu;Lee, Jae-Woong;Lee, Jang-Se
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1981-1989
    • /
    • 2015
  • Recently, the development of reliability analysis system for combat system is required, because, necessities of integrated reliability analysis research are emphasized. In this paper, we develop a system which analyzes vulnerabilities for tank(or armored vehicle) based on the fault tree analysis(FTA) technique. The FTA is representative technique of reliability analysis to find cause of fault and calculate probability of fault. To do this, we propose a method to apply FTA technique into domain of vulnerability analysis for tank. Also, we develop the vulnerability analysis system using the proposed method. The system analyzes hit probabilities of components of tank based on multiple shot-lines, and calculates kill probabilities. The analyzed and calculated data support vulnerability analysis of tank.

A Development of 3D Penetration Analysis Program for Survivability Analysis of Combat System : Focused on Tank Model (전투 시스템 생존성 분석을 위한 3차원 관통 해석 프로그램 개발 : 전차 모델을 대상으로)

  • Hwang, Hun-Gyu;Lee, Jae-Woong;Lee, Jang-Se;Park, Jong-Sou
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.244-250
    • /
    • 2015
  • Survivability is avoidance and tolerance ability of combat systems for accomplishing mission in battle field. Therefore, the combat system has to protect or minimize any damage from threats. For this reason, many modeling and simulation based studies which analyze vulnerability of the combat system by threats, are in progress to improve survivability of the combat system. In this paper, we developed a 3D penetration analysis program for survivability analysis of combat system. To do this, we applied the penetration analysis equation to threat and protection performance of tank. Also we implemented simple tank models based on 3D CAD, and tested the developed program using the implemented tank models. As a result, we verified the developed program that is possible to analyze penetration by threat and protection performance of tank and to visualize its result, based on scenarios.