• Title/Summary/Keyword: Armchair

Search Result 64, Processing Time 0.029 seconds

Adsorption Characteristics of Nitrogen in Carbonaceous Micropore Structures with Local Molecular Orientation (국부분자배향의 탄소 미세기공 구조에 대한 질소의 흡착 특성)

  • Seo, Yang Gon
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.249-257
    • /
    • 2022
  • The adsorption equilibria of nitrogen on a region of nanoporous carbonaceous adsorbent with local molecular orientation (LMO) were calculated by grand canonical Monte Carlo simulation at 77.16 K. Regions of LMO of identical size were arranged on a regular lattice with uniform spacing. Microporosity was predominately introduced to the model by removing successive out-of-plane domains from the regions of LMO and tilting pores were generated by tilting the basic structure units. This pore structure is a more realistic model than slit-shaped pores for studying adsorption in nanoporous carbon adsorbents. Their porosities, surface areas, and pore size distributions according to constrained nonlinear optimization were also reported. The adsorption in slit shaped pores was also reported for reference. In the slit shaped pores, a clear hysteresis loop was observed in pores of greater than 5 times the nitrogen molecule size, and in capillary condensation and reverse condensation, evaporation occurred immediately at one pressure. In the LMO pore model, three series of local condensations at the basal slip plane, armchair slip plane and interconnected channel were observed during adsorption at pore sizes greater than about 6 times the nitrogen molecular size. In the hysteresis loop, on the other hand, evaporation occurred at one or two pressures during desorption.

Raman Spectroscopy Study of Carothermal Reactions in Double-layer Graphene on $SiO_2$ Substrates

  • Park, Min-Gyu;Ryu, Sun-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.387-387
    • /
    • 2012
  • 그래핀(graphene)의 가장자리(edge)는 결정구조의 배향성에 따라 지그재그(zigzag)와 안락의자 (armchair) 형태로 구분되는데, 나노미터 크기의 그래핀의 전자적 성질은 이러한 가장자리의 배향성에 의해 크게 영향을 받는다고 알려져 있다. 단일층 그래핀 가장자리 사이에서 일어나는 산화실리콘($SiO_2$)의 carbothermal reduction은 선택적으로 지그재그 형태의 가장자리를 생성한다고 알려져 있다. 본 연구에서는 라만 분광법과 원자 현미경(atomic force microscopy)을 이용하여 기계적 박리법으로 만들어진 이중층 그래핀에서 일어나는 carbothermal reaction을 연구하였다. 고온 산화 방법으로 이중층 그래핀에 원형 식각공(etch pit)을 만들고 Ar 기체 속에서 700도 열처리를 진행한 후, 원형 식각공이 육각형으로 확장된 것을 관찰하였다. 이것은 이중층 그래핀도 산화실리콘의 carbothermal reduction을 유발한다는 사실을 보여준다. 그러나 이중층 그래핀의 반응속도는 단일층보다 느린 것이 확인되었는데, 이는 이중층 그래핀의 탄소 원자와 산화제로 작용하는 산화실리콘 간의 평균 거리가 단일층보다 더 크다는 사실로 설명할 수 있다. 또한 본 연구에서는 반응기 내의 압력이 반응 속도에 미치는 영향과 식각공이 육각형으로 변해가는 과정에 대한 라만 분광 특성을 조사 및 분석하였다.

  • PDF

A Study on Alessandro Mendini's Idea of Redesign with Special Reference to His 'Proust' armchair (알레산드로 멘디니(Alessandro Mendini)이 재디자인(Redesign)연구)

  • 김혜자
    • Korean Institute of Interior Design Journal
    • /
    • no.14
    • /
    • pp.107-113
    • /
    • 1998
  • This stud tires to present a general picture about Alessandro Mendini's unique idea of redesign. One of Italian post-war redical architect and designer mendini gives us a special opportunity to appreciate the social cultural and political context where the post-war Italian design lies. Also known as "banal design" Mendin's design revolutionized the way in which we practice utilize and think about design itself. It is my opinion that the idea of his redesign can be best understood when we consider the social contest of Italian design. Unlike that of other European countries post-war Italian design gave special emphasis on how design can or should be more than a simple activity of making aesthetic or industrial products. In terms of these possibilities Mendini was never optimistic : today we are completely controlled by dehumanized mass production and it is impossible for design to take a special role for a social change Then Mendini's pessimism is bound up with the spirit of this age widely known as postmodernism. Even though Mendini himself never characterized his design as postmodern it is not difficult to identify various postmodern elements in his idea and practice of redesign. Thus in the final section of this study I shall investigate the postmodern elements in this design and furthermore such an idea as what makes Mendini postmodern.

  • PDF

A Theoretical Study on STM image of Carbon Nanotube (탄소나노튜브 표면의 STM 이미지를 통한 전기적 특성 연구)

  • 문원하;황호정
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.314-317
    • /
    • 2002
  • Since the early work of Tersoff and Hamann on the theory of the scanning tunneling microscope (STM), many theoretical approaches have been developed in order to gain further physical insight into the real space image that this technique provides. In this Paper, the STM image of Carbon nanotubes (CNT's) was calculated through the theoretical study. The optimized structure of CNT's was simulated using Brenner's hydrocarbon potential. The structure of simulation is (5. 5) armchair CNT and (10. 0) zigzag CNT. Also we have used that the extended Huckel tight binding (EHTB) theory already provides a fairly good qualitative description of the main processes that control the final contrast in the STM image. we found that the shape of the calculated images is hardly dependent on the exact electronic charge distribution at the surface. The STM images are not too sensitive to the precise electronic structure but, rather, they reflect its qualitative features. As a result of the simulation, The STM images of CNT's and the electronic density distribution were investigated. It found that the EHTB theory is appropriate for STM image calculation and that the STM images are in agreement with the result of Experiment.

  • PDF

Prediction of Elastic Bending Modulus of Multi-layered Graphene Sheets Using Nanoscale Molecular Mechanics (나노스케일 분자역학을 이용한 다층 그래핀의 굽힘 탄성거동 예측)

  • Kim, Dae-Young;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.421-427
    • /
    • 2015
  • In this paper, a description is given of finite element method (FEM) simulations of the elastic bending modulus of multi-layered graphene sheets that were carried out to investigate the mechanical behavior of graphene sheets with different gap thicknesses through molecular mechanics theory. The interaction forces between layers with various gap thicknesses were considered based on the van der Waals interaction. A finite element (FE) model of a multi-layered rectangular graphene sheet was proposed with beam elements representing bonded interactions and spring elements representing non-bonded interactions between layers and between diagonally adjacent atoms. As a result, the average elastic bending modulus was predicted to be 1.13 TPa in the armchair direction and 1.18 TPa in the zigzag direction. The simulation results from this work are comparable to both experimental tests and numerical studies from the literature.

Vibration of SWCNTs: Consistency and behavior of polynomial law index with Galerkin's model

  • Khadimallah, Mohamed A.;Hussain, Muzamal;Khedher, Khaled Mohamed;Bouzgarrou, Souhail Mohamed;Al Naim, Abdullah F.;Naeem, Muhammad Nawaz;Taj, Muhammad;Iqbal, Zafar;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.9 no.4
    • /
    • pp.251-261
    • /
    • 2020
  • In this article, vibration attributes of single walled carbon nanotubes based on Galerkin's method have been investigated. The influence of power law index subjected to different end supports has been overtly examined. Application of the Hamilton's variational principal leads to the formation of partial differential equations. The effects of different physical and material parameters on the fundamental frequencies are investigated for armchair and zigzag carbon nanotubes with clamped-clamped, simply supported and clamped-free boundary conditions. By using volume fraction for power law index, the fundamental natural frequency spectra for two forms of Single-Walled Carbon Nanotubes (SWCNTs) are calculated. The influence of frequencies against length-to-diameter ratios with varying power law index are investigated in detail for these tubes. MATLAB software package has been utilized for extracting tube frequency spectra. The obtained results are confirmed by comparing with available literature.

Instability analysis of viscoelastic CNTs surrounded by a thermo-elastic foundation

  • Amir, Saeed;Khani, Mehdi;Shajari, Ali Reza;Dashti, Pedram
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.171-180
    • /
    • 2017
  • Static and dynamic instability of a viscoelastic carbon nanotube (CNT) embedded on a thermo-elastic foundation are investigated, in this research. The CNT is modeled based on Euler-Bernoulli beam (EBB) and nonlocal small scale elasticity theory is utilized to analyze the structure. Governing equations of the system are derived using Hamilton's principle and differential quadrature (DQ) method is applied to solve the partial differential equations. The effects of variable axial load and diverse boundary conditions on static/vibration instability are studied. To verify the result of the DQ method, the Galerkin weighted residual approach is used for the instability analysis. It is observed appropriate agreement for results of two different solution methods and satisfactory accuracy with those obtained in prior studies. The results of this work could be useful for engineers and designers in order to produce and design nano/micro structures in thermo-elastic medium.

Charge Transport Properties of Boron/Nitrogen Binary Doped Graphene Nanoribbons: An ab Initio Study

  • Kim, Seong Sik;Kim, Han Seul;Kim, Hyo Seok;Kim, Yong Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.180.2-180.2
    • /
    • 2014
  • Opening a bandgap by forming graphene nanoribbons (GNRs) and tailoring their properties via doping is a promising direction to achieve graphene-based advanced electronic devices. Applying a first-principles computational approach combining density functional theory (DFT) and DFT-based non-equilibrium Green's function (NEGF) calculation, we herein study the structural, electronic, and charge transport properties of boron-nitrogen binary edge doped GNRs and show that it can achieve novel doping effects that are absent for the single B or N doping. For the armchair GNRs, we find that the B-N edge co-doping almost perfectly recovers the conductance of pristine GNRs. For the zigzag GNRs, it is found to support spatially and energetically spin-polarized currents in the absence of magnetic electrodes or external gate fields: The spin-up (spin-down) currents along the B-N undoped edge and in the valence (conduction) band edge region. This may lead to a novel scheme of graphene band engineering and benefit the design of graphene-based spintronic devices.

  • PDF

First-principles Study of MoS2 Nanostructures with Various Adsorbates

  • Cha, Janghwan;Sung, Dongchul;Hong, Suklyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.210.2-210.2
    • /
    • 2014
  • Recently, molybdenum disulfide (MoS2) nanostructures have been investigated for applications of lithium-ion batteries, solar cell, and gas sensors. In this regard, we have studied atomic and electronic properties of MoS2 nanostructures with adsorbed atoms and molecules using density functional theory calculations. Our calculations reveal that the several atoms such as H, C, N, and F are chemically bound to several sites on the two-dimensional (2D) MoS2 surface. On the other hand, various contamination molecules such as CO, CO2, NO, NO2, and NH3 do not bind to the surface. Next, adsorption of various molecules on the one-dimensional (1D) armchair MoS2 nanoribbon is investigated. Contrary to the case of 2D MoS2 monolayer surface, some molecules (CO and NO) are bound well to the edge of the MoS2 nanoribbon. We find that the molecular states due to adsorption are located near the Fermi level, which makes the band gap narrower. Therefore, we suggest that monolayer MoS2 nanoribbons be used as the gas sensors or detectors.

  • PDF

First-principle study on interplay between structural and electronic properties of armchair CNTs

  • Lee, Hayoung;Kim, Cheol-Woon
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.472-474
    • /
    • 2014
  • Carbon nanotubes (CNTs) have been intensively investigated since they have been considered as building blocks of nanoscience and nanotechnology. Theoretical and computational studies on CNTs have revealed their physical and chemical properties and helped researchers build various experimental devices to study them in depth. However, there have been only few systematic studies on detailed changes in electronic structures of CNTs due to geometrical structure modifications. In this regard, it is necessary to perform systematic investigations of the modifications in electronic structures of CNTs, as their geometrical configurations are altered, using the first-principles density functional theory. In other words, it is essential to determine the true equilibrium structure of CNTs. We are going to construct different atomic configurations of each nanotube by maintaining the original symmetries, but changing all the other bonding types one by one. Furthermore, as for CNTs, for example, the way the graphene sheet is wrapped is represented by a pair of indices (n,m) and electronic structures of CNTs vary depending on different indices. Therefore, we plan to study and discuss all the significant couplings between electronic and geometric structures in CNTs.

  • PDF