• Title/Summary/Keyword: Arm Movement

Search Result 365, Processing Time 0.052 seconds

Treatment approach for the movement dysfunction of the shoulder girdle (견갑대 운동 기능장애에 대한 치료 접근)

  • Jang, Jun-Hyeok;Lee, Hyun-Ok;Koo, Bong-Oh
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.4
    • /
    • pp.412-430
    • /
    • 2003
  • Functional stability is dependent on integrated local and global muscle function. Movement dysfunction can present as a local and global problem, though both frequently occur together. To good understand how movement induces pain syndrome, the optimal actions and interaction of the multiple anatomic and functional systems involved in motion must be considered. Minor alterations in the precision of movement cause microtrauma and, if allowed to continue, will cause macrotrauma and pain. These alteration of the movement result in the development of compensatory movement and movement impairment. Muscle that become tight tend to pull the body segment to which they are attached, creating postural deviation. The antagonistic muscles may become weak and allow postural deviations due to lack of balanced support. Both hypertonic and inhibited muscles will cause an alteration of the distribution of pressure over the joint(s) that they cross and, thus, may not only result from muscle dysfunction, but produce joint dysfunction as well. Alteration of the shoulder posture and movement dysfunction may sometimes result in compression of neurovascular structures in the shoulder and arm. There is a clear link between reduced proprioceptive input, altered motor unit recruitment and the neurovascular compression. This report start with understanding of the impaired alignment, movement patterns and neuromuscular compression of the shoulder girdle by movement impairment to approach method of the movement dysfunction.

  • PDF

The Effect of Elector Spine Muscle Tone Using Irradiation According to the Angular Motion of a Proprioceptive Neuromuscular Facilitation (PNF) Arm Pattern (PNF 팔 패턴의 각도 변화가 척추세움근의 근 긴장도 변화와 방산의 효과에 미치는 영향)

  • Yang, Jae-Man;Lee, Sang-Moo;Lee, Jung-Hoon
    • PNF and Movement
    • /
    • v.18 no.3
    • /
    • pp.435-444
    • /
    • 2020
  • Purpose: This study aimed to compare the elector spine muscle tone using the irradiation of the proprioceptive neuromuscular facilitation (PNF) arm pattern according to angular motion. Methods: Thirty subjects participated in this study. Elector spine muscle tone was measured using a Myotonpro device while in the sitting position according to the angular motion (70°, 100°, 130°) of the PNF arm pattern using a D1 flexion pattern. Each angular motion of the PNF arm pattern was performed with a continuous passive motion (CPM). The change in elector spine muscle tone was statistically evaluated using a repeated one-way ANOVA test. Post-hoc analysis was performed using the Bonferroni method. Results: The results revealed a significant change in elector spine muscle tone when performing the PNF arm pattern using D1 flexion pattern. Specifically, the elector spine muscle tone had significantly increased at 100° and 130° motion in the PNF arm pattern when compared to the initial muscle tone (p < 0.05). No significant muscle tone changes were noted for any of the angular motions of the PNF upper arm pattern (p > 0.05). Conclusion: The results of this study indicate a positive increase in elector spine muscle tone with irradiation of the PNF upper arm pattern exercise with 100° or 130° angular motion. The minimum angle at which the effect of the irradiation of the PNF arm pattern could be seen was 100°.

Inverse Kinematics Solution and Optimal Motion Planning for Industrial Robots with Redundancy (여유 자유도를 갖는 산업용 로봇의 역기구학 해석 및 최적 동작 계획)

  • Lee, Jong-Hwa;Kim, Ja-Young;Lee, Ji-Hong;Kim, Dong-Hyeok;Lim, Hyun-Kyu;Ryu, Si-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • This paper presents a method to optimize motion planning for industrial manipulators with redundancy. For optimal motion planning, first of all, particular inverse kinematic solution is needed to improve efficiency for manipulators with redundancy working in various environments. In this paper, we propose three kinds of methods for solving inverse kinematics problems; numerical and combined approach. Also, we introduce methods for optimal motion planning using potential function considering the order of priority. For efficient movement in industrial settings, this paper presents methods to plan motions by considering colliding obstacles, joint limits, and interference between whole arms. To confirm improved performance of robot applying the proposed algorithms, we use two kinds of robots with redundancy. One is a single arm robot with 7DOF and another is a dual arm robot with 15DOF which consists of left arm, right arm with each 7DOF, and a torso part with 1DOF. The proposed algorithms are verified through several numerical examples as well as by real implementation in robot controllers.

Intelligent Position Control of a Vertical Rotating Single Arm Robot Using BLDC Servo Drive

  • Manikandan, R.;Arulmozhiyal, R.
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.205-216
    • /
    • 2016
  • The manufacturing sector resorts to automation to increase production and homogeneity of products during mass production, without increasing scarce, expensive, and unreliable manpower. Automation in the form of multiple robotic arms that handle materials in all directions in different stages of the process is proven to be the best way to increase production. This paper thoroughly investigates robotic single-arm movements, that is, 360° vertical rotation, with the help of a brushless DC motor, controlled by a fuzzy proportional-integral-derivative (PID) controller. This paper also deals with the design and performance of the fuzzy-based PID controller used to control vertical movement against the limited scope of conventional PID feedback controller and how the torque of the arm is affected by the fuzzy PID controller in the four quadrants to ensure constant speed and accident-free operation despite the influence of gravitational force. The design was simulated through MATLAB/SIMULINK and integrated with dSPACE DS1104-based hardware to verify the dynamic behaviors of the arm.

Effect of Plank Exercise Combined with Breathing and Arm Exercises on Abdominal Muscle Thickness

  • Park, Jae-Cheol;Kim, Yong-Nam
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.4
    • /
    • pp.193-198
    • /
    • 2019
  • Purpose: This study examined the effects of plank exercise combined with breathing and arm exercises on the external oblique, internal oblique, and transverse abdominal muscle thickness. Methods: Thirty healthy adults consisting of 12 males and 18 females from K area were divided into a plank exercise combined with breathing and arm exercises group (n = 15) and a plank exercise only group (n=15). The changes in muscle thickness before the exercise and four and eight weeks after the exercise were analyzed using a two-way repeated analysis of variance (ANOVA). The significance level was set to ${\alpha}=0.05$. Post-hoc t-tests were conducted to detect the interactions between the time and groups, and the significance level was set to ${\alpha}=0.01$. Results: According to the experimental results, the external oblique abdominal muscle showed significant differences over time (p<0.05). The internal oblique abdominal muscle also showed significant differences over time and in the interactions between the time and groups (p<0.05). The transverse abdominal muscle showed significant differences over time, in the interactions between time and groups, and in the changes between the groups (p<0.05). Conclusion: The results indicated that plank exercise combined with breathing and arm movement exercises led to increases in the abdominal muscle thickness. These types of exercises may be useful in lumbar stabilization rehabilitation treatment.

The Effect of Foot Pressure on the Irradiation of a PNF Upper Arm Pattern on Standing Posture with an Elastic Band: A Randomized Control Trial (바로 선 자세에서 탄력밴드를 이용한 PNF 팔 패턴의 방산효과가 발 압력에 미치는 영향)

  • Yang, Jae-Man;Lee, Jung-Hoon;Kang, Seung-Won
    • PNF and Movement
    • /
    • v.16 no.3
    • /
    • pp.425-432
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the relationship between foot pressure and upper arm PNF exercise conducted with elastic bands while standing. Methods: Eighteen asymptomatic patients consented to participate in the study. Foot pressure was measured in the standing position using the Gaitview system for proprioceptive neuromuscular facilitation stretching (PNF) using a right upper arm pattern. Resistance strength was varied based on the type of elastic band used (red=medium, green=heavy, and blue=extra heavy). Statistical significance of the results was evaluated using a repeated one-way ANOVA, and the Bonferroni method was used for the ad hoc test (SPSS ver. 18. for Windows). Results: A significant difference was observed in fore-foot, rear-foot, and everage pressure after upper arm PNF exercise. However, there was no significant difference according to the type of elastic band. Conclusion: Based on the results of this study, an upper arm PNF exercise with and without resistance may affect foot pressure in the standing position.

Osteokinematic analysis during shoulder abduction using the C-arm

  • Lee, Seung Hoo;Kim, Younghoon;Lee, Dong Geon;Lee, Kyeong-Bong;Lee, Gyu Chang
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.4
    • /
    • pp.208-213
    • /
    • 2017
  • Objective: Despite reliable evidence of abnormal scapular motions increases, there is not yet sufficient evidence of abnormal humeral translations. This study aims to analyze the motion of the humeral head toward the scapula when the shoulder is actively abducted using the C-arm. Design: A case report. Methods: The participant was a healthy man without any limitation and pain during shoulder movement. The participant's shoulder was abducted; this movement in the frontal plane was measured using a C-arm (anterior-posterior view) and was analyzed with computer-aided design. The starting posture was $15^{\circ}$, and as the participant abducted his shoulder measurements were taken and analyzed at $30^{\circ}$, $60^{\circ}$, $90^{\circ}$, $120^{\circ}$, $150^{\circ}$, and ending at $165^{\circ}$. A line was drawn perpendicularly to the line connecting the humeral head axis to the glenoid, and another line was drawn perpendiculary to the line connecting the scapular axis to the glenoid. The distance between the two lines measured is defined as the e value. Results: At the starting posture ($15^{\circ}$), the central axis of the humeral head was located 1.92 mm inferior to the central axis of the scapula. The humeral head was superiorly translated from the starting posture to $120^{\circ}$, and then, showed an inferior translation to the ending posture ($165^{\circ}$). Conclusions: The results of this study showed that the humeral head moved upward from the starting posture ($15^{\circ}$) up to $120^{\circ}$ indicating, superior translation, and it moved downward when the posture was past $120^{\circ}$, indicating inferior translation.

Measurement of shoulder motion fraction and motion ratio (견관절 운동 분율의 측정)

  • Kang, Yeong-Han
    • Journal of radiological science and technology
    • /
    • v.29 no.2
    • /
    • pp.57-62
    • /
    • 2006
  • Purpose : This study was to understand about the measurement of shoulder motion fraction and motion ratio. We proposed the radiological criterior of glenohumeral and scapulothoracic movement ratio. Materials and Methods : We measured the motion fraction of the glenohumeral and scapulothoracic movement using CR(computed radiological system) of arm elevation at neutral, 90 degree, full elevation. Central ray was $15^{\circ},\;19^{\circ},\;22^{\circ}$ to the cephald for the parallel scapular spine, and the tilting of torso was external oblique $40^{\circ},\;36^{\circ},\;22^{\circ}$ for perpendicular to glenohumeral surface. Healthful donor of 100 was divided 5 groups by age(20, 30, 40, 50, 60). The angle of glenohumeral motion and scapulothoracic motion could be taken from gross arm angle and radiological arm angle. We acquired 3 images at neutral, $90^{\circ}$ and full elevation position and measured radiographic angle of glenoheumeral, scapulothoracic movement respectively. Results : While the arm elevation was $90^{\circ}$, the shoulder motion fraction was 1.22(M), 1.70(W) in right arm and 1.31, 1.54 in left. In full elevation, Right arm fraction was 1.63, 1.84, and left was 1.57, 1.32. In right dominant arm(78%), $90^{\circ} and Full motion fraction was 1.58, 1.43, in left(22%) 1.82, 1.94. In generation 20, $90^{\circ} and Full motion fraction was 1.56, 1.52, 30' was 1.82, 1.43, 40' was 1.23, 1.16, 50' was 1.80, 1.28, 60' was 1.24, 1.75. There was not significantly by gender, dominant arm and age. Conclusion : The criterior of motion fraction was useful reference for clinical dignosis the shoulder instability.

  • PDF

Electromyographic comparison of modified push-up exercise: focused on various arm position

  • Kim, You-Sin;Yang, Jae-Young;Lee, Nam-Ju
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.36-42
    • /
    • 2018
  • This study was to investigate the difference of muscle activities in trunk, upper arm, and shoulder during push-up exercise based on 3 types of different arm position(posterior position, PP; normal position, NP; and anterior position, AP) and to provide effective push-up arm position for each muscle development. Fifteen healthy males(age, $21.5{\pm}0.5years$; height, $172.7{\pm}1.0cm$; body mass, $70.5{\pm}1.3kg$; shoulder width, $42.3{\pm}0.6cm$; and BMI, $23.6{\pm}0.5kg/m^2$) participated in this study. PP, NP, and AP of the arm were used to conduct push-up exercise and 8 muscles(deltoideus p. acromialis: DA; pectoralis minor: PMI; pectoralis major: PMA; serratus anterior: SA; biceps brachii: BB; triceps brachii: TB; latissimus dorsi: LD; and infraspinatus: IS) of right side were selected to measure muscle activities. Total 9 counts of push-up exercise were conducted and EMG data signals of 5-time(from $3^{th}$ to $7^{th}$) push-up movement were used for measuring muscle activities. PP push-up exercise showed that there was a significantly higher muscle activity of DA, PMI, PMA, SA, BB, LD, and IS(p<.05) and AP push-up exercise showed a significantly higher TB activity(p<.05). It would be suggested that different arm position evokes various muscle activities when conducting push-up exercise. PP would be the best push-up arm position for inducing various trunk, upper arm, and shoulder muscle activities compared to NP and AP.

A trajectory prediction of human reach (Reach 동작예측 모델의 개발)

  • 최재호;정의승
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.787-796
    • /
    • 1995
  • A man model is a useful design tool for the evaluation of man machine systems and products. An arm reach trajectory prediction for such a model will be specifically useful to present human activities and, consequently, could increase the accuracy and reality of the evaluation. In this study, a three-dimensional reach trajectory prediction model was developed using an inverse kinematics technique. The upper body was modeled as a four link open kinematic chain with seven degrees of freedom. The Resolved Motion Method used for the robot kinematics problem was used to predict the joint movements. The cost function of the perceived discomfort developed using the central composite design was also used as a performance function. This model predicts the posture by moving the joints to minimize the discomfort on the constraint of the end effector velocity directed to a target point. The results of the pairwise t-test showed that all the joint coordinates except the shoulder joint's showed statistically no differences at .alpha. = 0.01. The reach trajectory prediction model developed in this study was found to accurately simulate human arm reach trajectory and the model will help understand the human arm reach movement.

  • PDF