• Title/Summary/Keyword: Arm Movement

Search Result 365, Processing Time 0.025 seconds

Muscle Latency Time and Activation Patterns for Upper Extremity During Reaching and Reach to Grasp Movement

  • Choi, Sol-a;Kim, Su-jin
    • Physical Therapy Korea
    • /
    • v.25 no.3
    • /
    • pp.51-59
    • /
    • 2018
  • Background: Despite muscle latency times and patterns were used as broad examination tools to diagnose disease and recovery, previous studies have not compared the dominant arm to the non-dominant arm in muscle latency time and muscle recruitment patterns during reaching and reach-to-grasp movements. Objects: The present study aimed to investigate dominant and non-dominant hand differences in muscle latency time and recruitment pattern during reaching and reach-to-grasp movements. In addition, by manipulating the speed of movement, we examined the effect of movement speed on neuromuscular control of both right and left hands. Methods: A total of 28 right-handed (measured by Edinburgh Handedness Inventory) healthy subjects were recruited. We recorded surface electromyography muscle latency time and muscle recruitment patterns of four upper extremity muscles (i.e., anterior deltoid, triceps brachii, flexor digitorum superficialis, and extensor digitorum) from each left and right arm. Mixed-effect linear regression was used to detect differences between hands, reaching and reach-to-grasp, and the fast and preferred speed conditions. Results: There were no significant differences in muscle latency time between dominant and non-dominant hands or reaching and reach-to-grasp tasks (p>.05). However, there was a significantly longer muscle latency time in the preferred speed condition than the fast speed condition on both reaching and reach-to-grasp tasks (p<.05). Conclusion: These findings showed similar muscle latency time and muscle activation patterns with respect to movement speeds and tasks. Our findings hope to provide normative muscle physiology data for both right and left hands, thus aiding the understanding of the abnormal movements from patients and to develop appropriate rehabilitation strategies specific to dominant and non-dominant hands.

Immediate Effect of Serratus Posterior Inferior Muscle Direction Taping on Thoracolumbar Junction Rotation Angle During One Arm Lifting in the Quadruped Position

  • Kim, Nu-ri;Ahn, Sun-hee;Gwak, Gyeong-tae;Yoo, Hwa-ik;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.28 no.3
    • /
    • pp.227-234
    • /
    • 2021
  • Background: The serratus posterior inferior (SPI) muscle originates from the spinous process of T11-L2 and inserts at the lower border of the 9-12th ribs. This muscle is involved in thoracolumbar rotation and stability. Several positions can be used to improve trunk stability; the quadruped position is a good position for easily maintaining a neutral spine. In particular, during one arm lifting, various muscles act to maintain a neutral trunk position, and the SPI is one of these muscles. If trunk stability is weakened, uncontrolled trunk rotation may occur at this time. Tape can be used to increase trunk stability. There have been no studies on the effect of taping applied to the SPI muscle on thoracolumbar junction (TLJ) stability. Objects: This study compared the TLJ rotation angle between three different conditions (without taping, transverse taping, and SPI muscle direction taping). Methods: Thirty subjects were recruited to the study (18 males and 12 females). The TLJ rotation angle was measured during one arm lifting in a quadruped position (ALQP). Two taping methods (transverse and SPI muscle direction taping) were applied, and the TLJ rotation angle was measured in the same movement. Results: SPI muscle direction taping significantly reduced TLJ rotation compared to that without taping (p < 0.001) and with transverse taping (p < 0.001). There was a significant difference in the TLJ rotation angle between transverse taping and SPI muscle direction taping (p < 0.017). Conclusion: SPI muscle direction taping reduces the TLJ rotation angle during ALQP. Therefore, SPI muscle direction taping is one method to improve TLJ stability and reduce uncontrolled TLJ rotation during ALQP.

Movement Intention Detection of Human Body Based on Electromyographic Signal Analysis Using Fuzzy C-Means Clustering Algorithm (인체의 동작의도 판별을 위한 퍼지 C-평균 클러스터링 기반의 근전도 신호처리 알고리즘)

  • Park, Kiwon;Hwang, Gun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.1
    • /
    • pp.68-79
    • /
    • 2016
  • Electromyographic (EMG) signals have been widely used as motion commands of prosthetic arms. Although EMG signals contain meaningful information including the movement intentions of human body, it is difficult to predict the subject's motion by analyzing EMG signals in real-time due to the difficulties in extracting motion information from the signals including a lot of noises inherently. In this paper, four Ag/AgCl electrodes are placed on the surface of the subject's major muscles which are in charge of four upper arm movements (wrist flexion, wrist extension, ulnar deviation, finger flexion) to measure EMG signals corresponding to the movements. The measured signals are sampled using DAQ module and clustered sequentially. The Fuzzy C-Means (FCMs) method calculates the center values of the clustered data group. The fuzzy system designed to detect the upper arm movement intention utilizing the center values as input signals shows about 90% success in classifying the movement intentions.

The Effect of Wrist and Trunk Weight Loading using Sandbags on Gait in Chronic Stroke Patients (모래주머니를 이용한 팔목과 몸통의 무게 증가가 만성 뇌졸중 환자들의 보행에 미치는 영향)

  • Park, Sangheon;Lim, Hee Sung;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.1
    • /
    • pp.50-58
    • /
    • 2021
  • Objective: This study aimed to determine the effect of wrist and trunk weight loading using sandbags in stroke patients in order to provide the quantitative data for enhancement of gait movement. Method: Twelve stroke patients, who have been diagnosed with hemiplegia over a year ago, were participated in this study. All subjects were asked to perform normal walking [N], wrist sandbag walking [W], wrist & trunk sandbag walking [WT], and both wrist sandbag walking [B] and both wrist & trunk sandbag walking [BT], respectively. Eight infrared cameras were used to collect the raw data. Gait parameters, arm swing, shoulder-pelvic kinematics, and lower extremity joint angle were calculated to examine the differences during walking. Results: As a result, there were no significant differences in the gait parameters, shoulder-pelvis, and lower extremities joint angles, but significant differences were found in the range of motion and the anteversion in arm swing. Conclusion: Wrist and trunk weight loading using sandbags affected the movement of the upper extremities only while it did not affect the movement of the lower extremities. It implies that it can reduce the risk of falling caused by a sudden movement change in lower extremities. In addition, the wrist and trunk weight loading using sandbags can induce changes in movement of the upper extremities independently and contribute to functional rehabilitation through resistance training.

A Study on the Length Variation of the Upper Body Surface according to Arm-movements for Early Elementary Schoolgirls (학령전기 여아의 상지동작에 따른 상반신 체표길이 변화 연구)

  • Pae Eun-Ah;Jang Jeong-Ah;Kwon Young-Suk
    • Journal of the Korean Society of Costume
    • /
    • v.55 no.5 s.95
    • /
    • pp.87-100
    • /
    • 2005
  • This study was to provide the fundamental data for a scientific and rational clothing construction by investigating the length variation of the upper body surface, using the method of surgical tape. The subjects were 15 early elementary schoolgirls in Busan area classified by three somatotypes, Arm-movements were consisted of 6 types. The statistical analyses used in this study were mean, standard deviation and the ANOVA and LSD procedure. The results of the analysis of the length of the upper body surface are as follows: By arm-movements, in the items of horizontal, front neck base girth, back upper bust girth, back bust girth and back under bust girth were increased and the other standard lines were apt to be decreased. In the items of vertical, all standard lines of front side and side seam length showed increased, the lines of bark side were apt to be decreased. The shoulder length represented the maximum rate of decrease($-36.59\%{\~}-48.98\%$) in M6($180^{\circ}$) and the side seam showed the maximum rate of increase($49.74\%{\~}59.22\%$) in the same movement.

Evaluation and Verification of Optimal Electrode Configurations for Detection of Arm Movement Using Bio-Impedance (생체임피던스에 의한 상지운동 감지를 위한 최적 전극 위치의 평가 및 검증)

  • Ahn, Seon-Hui;Kim, Soo-Chan;Nam, Ki-Chang;Kim, Deok-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.399-402
    • /
    • 2002
  • In this study, we constructed a four-channel impedance measurement system including a two-channel goniometer to analyze human arm movement. Impedances and joint angles were simultaneously measured for wrist and elbow movements. As the impedance changes resulting from wrist and elbow movements depended heavily on electrode placement, we determined the optimal electrode configurations for those movements by searching for high correlation coefficients, large impedance changes, and minimum interferences in ten subjects (age: 29+6). Our optimal electrode configurations showed very strong relationships between the wrist joint angle and forearm impedance (correlation coefficient = 0.95+0.04), and between the elbow joint angle and upper arm impedance (correlation coefficient = -0.98+0.02). Although the measured impedances changes of the wrist (1.1+1.5 ohm) and elbow (-5.0+2.9 ohm) varied among individuals, the reproducibilities of wrist and elbow impedance changes of five subjects were 5.8+1.8 % and 4.6+1.4 % for the optimal electrode pairs, respectively. We propose that this optimal electrode configuration would be useful for future studies involving the measurement of accurate arm movements by impedance method.

  • PDF

The Effect of the Modified Bent Arm Torando Exercises to Weight Movement and Muscle Activity when Doing Drive Swing Motion from the Top to Impact Section

  • Bae, Sang Kyu;Yun, Su Bin;Kim, Jong Won;Lee, Jong Kyung;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.4
    • /
    • pp.149-154
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate effects of the modified bent arm tornado exercise on weight shift movement and muscle activity of the impact section in the top of the drive swing. Methods: Twenty subjects were divided professional golfer group and amateur golf group. Subjects were required to complete following modified bent arm tornado exercise. The activity and weight shift of the gluteus group and lower extremity muscles between the two groups were measured and the Wilcoxon rank test was analyzed. Results: The distribution of weight shift in the professional golfer group was higher than that of the amateur golfer group (p<0.05). During the golf downswing of the professional golfer group, muscle activation of the lower extremities was higher than that of the amateur golfer group (p<0.05). The distribution of weight shift after exercise by the amateur golfer group was higher than before (p<0.05). Conclusion: We could confirm was increased significantly of muscle activity and weight shift by applying modified bent arm tornado exercise through this study. This result suggests that exercise is needed to improve weight shift.

NREH: Upper Extremity Rehabilitation Robot for Various Exercises and Data Collection at Home (NREH: 다양한 운동과 데이터 수집이 가능한 가정용 상지재활로봇)

  • Jun-Yong Song;Seong-Hoon Lee;Won-Kyung Song
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.376-384
    • /
    • 2023
  • In this paper, we introduce an upper extremity rehabilitation robot, NREH (NRC End-effector based Rehabilitation arm at Home). Through NREH, stroke survivors could continuously exercise their upper extremities at home. NREH allows a user to hold the handle of the end-effector of the robot arm. NREH is a end-effector-based robot that moves the arm on a two-dimensional plane, but the tilt angle can be adjusted to mimic a movement similar to that in a three-dimensional space. Depending on the tilting angle, it is possible to perform customized exercises that can adjust the difficulty for each user. The user can sit down facing the robot and perform exercises such as arm reaching. When the user sits 90 degrees sideways, the user can also exercise their arms on a plane parallel to the sagittal plane. NREH was designed to be as simple as possible considering its use at home. By applying error augmentation, the exercise effect can be increased, and assistance force or resistance force can be applied as needed. Using an encoder on two actuators and a force/torque sensor on the end-effector, NREH can continuously collect and analyze the user's movement data.

Fuzzy sliding-mode control of a human arm in the sagittal plane with optimal trajectory

  • Ardakani, Fateme Fotouhi;Vatankhah, Ramin;Sharifi, Mojtaba
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.653-663
    • /
    • 2018
  • Patients with spinal cord injuries cannot move their limbs using their intact muscles. A suitable controller can be used to move their arms by employing the functional electrical stimulation method. In this article, a fuzzy exponential sliding-mode controller is designed to move a musculoskeletal human arm model to track an optimal trajectory in the sagittal plane. This optimal arm trajectory is obtained by developing a policy for the central nervous system. In order to specify the optimal trajectory between two points, two dynamic and static optimal criteria are applied simultaneously. The first dynamic objective function is defined to minimize the joint torques, and the second static optimization is offered to minimize the muscle forces at each moment. In addition, fuzzy logic is used to tune the sliding-surface parameter to enable an appropriate tracking performance. Simulation results are evaluated and compared with experimental data for upward and downward movements of the human arm.

A Study on Analysis of Breast Shapes by Replica Experiments (Replica법을 이용한 성인 여성 유방 형태 분석에 관한 연구)

  • 이경화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.4
    • /
    • pp.689-698
    • /
    • 1997
  • The purpose of this study is to develop the well-fitted brassieres by observing the changes in the breast sizes and shapes, the surface area and the volume of the breast through the arm movements of 3 types (0$^{\circ}$, 90$^{\circ}$ and 180$^{\circ}$) in vertical motion. The subjects are females, who are aged twenties and wearing a brassiere size 70B, In particular, to obtain the measures regarding the surface area and the volume of the breast, replicas are made at each motion. The results of this study are as follows: 1. The changes in the breast sizes and shapes at each motion By increasing the motions of the arm movement, the following measure items are inclined to decrease: Shoulder length, Side neck point~B.P., Front neck point~B.P., Horizontal length of the cup, Upper bust circumference, Bust circumference, Upper bust depth, Bust depth, Under bust depth, Nipple to tipple breadth, Horizontal distance of bust, Bust height, Cup size. By increasing the motions of the arm movement, the following measure items are inclined to increase: Center point of shoulder~B.P., Shoulder point~B.P., Armpit~ lowest point of breast drooping, Upper bust point~B.P., B.P~Under bust point, Under bust line, Width of gap between breast, Vertical distance of Bust. 2. The changes in the surface area and volume of breast at each motion By making the replica to observe changes in the surface area, which are sectioned to 4 parts(area 1 to area 4) , and volume of breast at each motion, the results are as follows: At 0$^{\circ}$ and 90$^{\circ}$, the sizes of each part are ordered as the following: area2> areal> area4> area3. At 180$^{\circ}$, the sizes of each part are ordered as the following: areal> area2> area4> area3. Through these orders, it is found that the upper and inside part of the breast has the inclination to increase so long as the motions of the arm movement increase. Also, the total surface area increases so long as the motions of the arm movement increase. The volume of the breast increase when the surface area of the breast increases. As a result of the F-test on the changes in the each surface areas, the surface area and volume by arm movements, the significant differences among the each surface areas and the surface area are not found.

  • PDF