• 제목/요약/키워드: Areal interpolation

검색결과 24건 처리시간 0.025초

지표피복 데이터와 지리가중회귀모형을 이용한 인구분포 추정에 관한 연구 (Locally adaptive intelligent interpolation for population distribution modeling using pre-classified land cover data and geographically weighted regression)

  • 김화환
    • 한국지역지리학회지
    • /
    • 제22권1호
    • /
    • pp.251-266
    • /
    • 2016
  • 데시메트릭 매핑은 행정구역 단위로 집계된 인구자료를 행정구역 내부의 공간적 변이에 따라 재집계하여 고해상도의 인구분포 자료를 작성하는 가장 보편적인 기법이다. 본 연구에서는 데시메트릭 매핑을 이용한 인구분포 추정의 장단점을 검토하고, 그 개선방안으로서 지리가중회귀모형을 이용한 다변량 데시메트릭 매핑 기법을 제안하였다. 기존의 지표피복 데이터와 인구센서스 자료를 기반으로 지리가중회귀모형을 적용하여 각 집계단위별로 지표피복 유형과 인구밀도의 상관관계를 분석하고, 모형에서 산출된 회귀계수를 이용해 하위 공간구획의 인구 총수를 산정하였다. 그 결과 지리가중회귀모형 기반 다변량 데시메트릭 매핑 기법을 이용했을 때, 면적가중 보간법, 이진 데시메트릭 매핑, 피크노필렉틱 보간법, 최소자승회귀모형 기반 데시메트릭 매핑 기법 등 다른 지능형 보간법에 비해 정확한 인구분포 추정이 가능하다는 것을 확인하였다. 이는 지리가중회귀모형을 통해서 인구센서스 집계 단위별로 상이한 구역 내 공간적 이질성이 인구분포 추정에 적절히 반영되었기 때문인 것으로 평가할 수 있다.

  • PDF

구역단위 인구자료의 공간적 세분화를 위한 밀도 구분적 표면모델에 대한 평가 (An Evaluation of a Dasymetric Surface Model for Spatial Disaggregation of Zonal Population data)

  • 전병운
    • 한국지역지리학회지
    • /
    • 제12권5호
    • /
    • pp.614-630
    • /
    • 2006
  • 자연 및 기술재해에 빠르고 효과적으로 대응하기 위해서는 그 재해지역 내에 있는 인구수를 정확히 추정할 필요가 있다. 그러나 센서스 구역과 재해지역의 공간적 불일치 문제 때문에, 재해지역 내에 있는 인구수를 정확하게 추정할 때에는 구역단위 인구자료를 공간적으로 세분화할 필요가 있다. 본 논문은 센서스 블럭그룹 내의 인구를 개개의 화소로 세분화하기 위한 밀도 구분적 표면모델을 구현하고, 그 표면기반 공간적 세분화 모델의 성능을 통계적 및 가시적으로 평가한다. 표면기반 공간적 세분화 모델은 밀도 구분적 내삽법과 위성영상으르부터 추출된 토지이용 및 피복자료를 사용하며 지리정보시스템에서 구현되었다. 토지이용 및 피복자료는 밀도 구분적 내삽법에서 인구의 지리적 분포에 관한 추가정보를 제공했고, 토지이용 및 피복자료의 퍼센트에 기반을 둔 경험적 표본추출법과 지역가중법은 각 화소에 대한 밀도 구분적 가중치를 객관적으로 결정하기 위해서 사용되었다. 표면기반 공간적 세분화 모델은 애틀란타 대도시권의 밀도 구분적 인구표면을 만드는데 적용되었다. 그 밀도 구분적 인구표변의 정확도는 센서스 수치와의 비교를 통해서 RMSE와 수정 RMSE를 사용하면서 검증되었다. 또한, 각 센서스 트랙과 블럭그룹별 오차들은 퍼센트 오차지도들에 의해서 가시화 되었다. 분석결과에 따르면, 밀도 구분적 인구표면은 인구수의 정확한 추정치를 제시할 뿐만 아니라, 센서스 블록그룹 내의 인구의 상세한 공간분포를 보여 준다. 또한, 인구표면은 대개 교외 및 산림지역 그리고 도심지역에서 인구를 과소평가하거나 과대평가하는 경향이 있다는 것을 밝혀냈다.

  • PDF

지점 강수량과 내삽기법을 이용한 면적평균 강수량 산정의 오차 분석 (Error analysis of areal mean precipitation estimation using ground gauge precipitation and interpolation method)

  • 황석환;강나래;윤정수
    • 한국수자원학회논문집
    • /
    • 제55권12호
    • /
    • pp.1053-1064
    • /
    • 2022
  • 현행 면적평균 강수량 산정 방법인 티센 방법은 정확한 유역평균 강수량 산정에 있어 심각한 구조적 한계가 존재한다. 강수량계의 관측 정확도 외에, 강수량계 배치와 호우의 이동 방향에 따라서도 면적평균 강수량 산정에 오차가 발생할 수 있다. 유역이 작고 관측소 밀도가 희박한 경우 시뮬레이션 및 관측 사상 모두에서 티센 방법은 첨두 전후로 10분 사이에 유역평균 강수량이 계속 급격히 증감이 반복되는 특이한 경향 보였다. 그리고 티센 유역평균 강수량은 첨두 시점이 강우레이더와 다르게 나타났다. 유역이 작지만 관측소 밀도 비교적 높은 경우에는 전반적으로 티센 방법에 의해 톱니모양의 과대 첨두치의 경향은 나타나지 않았고 시간에 따른 변동이 유사하게 나타났다. 그러나 강우레이더 관측치와 지상 강수량계 관측치 유역평균 강수량 사이에 약 10분 정도의 연속적인 시차가 발생하였다. 강우레이더 유역평균 강수량의 지상보정 효과를 검토한 결과, 보정 후 면적평균 강수량이 보정 전 면적평균 강수량에 비해 오히려 상관이 낮게 나타나, 현행 강우레이더 지상보정 알고리즘 보정 효과가 높지 않은 것을 알 수 있었다.

낙동강유역 면적평균강우량 산정 기법에 대한 비교 연구 (Comparative Study on Estimation of Areal Average Rainfall in Nakdong River Basin)

  • 이용신;나유진;방준세
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.948-952
    • /
    • 2009
  • 면적평균강우량을 정확하게 추정하는 것은 수문조사 결과로 생성된 수위-유량관계곡선 검증을 위한 연간 유출율 및 유황분석 시에 매우 중요하다. 면적평균강우량을 산정하는 방법은 일반적으로 산술평균법, 티센법, 등우선법 등이 있는데, 최근 실무에서는 GIS Tool을 이용하여 티센다각형을 작도하고 가중치를 산정하여 관측소별 강우량을 유효강우량으로 변환하여 이용하거나, 평지 또는 좁은 유역의 경우 산술평균법을 적용하고 있다. 그러나 티센법은 지형적인 영향을 고려할 수없고, 산술평균법의 경우 우량계 밀도와 위치, 지형이 고려되지 못한다는 단점이 있기 때문에, 등우선법을 이용하여 면적평균강우량을 산정하는 것이 대부분 산악지역으로 이루어진 국내 현실에 가장 적합하다. 본 연구에서는 수문조사가 이루어지고 있는 낙동강 본류, 댐상류 등 13개 유역의 유역별 면적 평균강우량을 각각 산술평균법, 티센법, 등우선법을 이용하여 산정하였다. 등우선도의 작성을 위하여 관측소별 강우량을 역거리가중법(IDW), RBF, Kriging 기법을 이용하여 강우량의 공간보간을 실시하였으며, 등우선 간격의 영향을 검증하기 위하여 각 보간법 별 등우선 간격을 10mm, 50mm, 100mm로 분할하여 면적평균강우량을 산정하였다. 각 면적평균강우량 산정기법 및 등우선 간격별로 산정된 면적평균강우량을 비교하였고, 유역면적 등에 따른 면적평균강우량의 변화특성을 분석 하였다.

  • PDF

강수의 공간보간 기법에 따른 제주 면적강수량 비교 (Comparative study on the areal rainfall in Jeju region according to the spatial interpolation scheme)

  • 엄명진;이정은;정일문
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.931-931
    • /
    • 2012
  • 제주지역의 강수자료는 최근에 이르러 69개 지점으로 증가하여 비교적 밀도있는 강수관측이 진행되고 있다. 그러나 기존의 자료 증설 내역과 이설 등으로 인해 과거로부터 현재에 이르는 자료를 기반으로 면적강수량을 산정할 경우 다소 어려움이 있다. 본 연구에서는 1992년부터 2010년까지의 강수자료를 바탕으로 관측소 개수를 기반으로 기간을 구분하여 각 기간별로 공간보간기법별로 면적강수량을 산정하고 이를 비교하였다. 사용한 공간보간기법은 PRISM(Parameter-elevation Regressions on Independent Slopes Model)기법과 티센(Thiessen)법으로 19년간의 일강수량 자료를 바탕으로 각각 면적강수량을 산정했다. PRISM기법을 이용한 경우는 고도, 관측점으로부터의 거리, 방향성 분석 및 해안가중치를 고려하여 계산하였고, 티센법의 경우는 기간별로 상이한 티센망을 구축하여 산정하였다. 지점 관측강수량에서 고도가 증가할수록 강수량이 증가하는 제주형 산악효과가 나타났으며 이는 보간기법에 의한 결과에서도 동일하게 나타나는 것으로 확인되었다. 또한 고도에 따른 상관성은 PRISM기법에 의한 결과에서 더 높게 산정되는 것으로 나타났다. 기법별 산정된 면적강수량은 근소한 차이를 보였으며 PRISM기법에 의한 값이 티센법에 비해 약 1%정도 크게 계산되었다.

  • PDF

확률강우량의 공간분포 추정을 위한 KED 기법의 적용 (Application of KED Method for Estimation of Spatial Distribution of Probability Rainfall)

  • 서영민;여운기;이승윤;지홍기
    • 한국수자원학회논문집
    • /
    • 제43권8호
    • /
    • pp.757-767
    • /
    • 2010
  • 본 연구는 확률강우량에 대한 공간분포 추정시 신뢰도를 향상시키는데 있어서 외부변수 사용의 유효성을 평가하기 위하여 확률강우량과 단일 보조변수로서 지형특성인자들과의 상관관계를 고려한 KED 기법을 적용하였으며, 그 결과 강우공간분포 및 유역평균강우량의 추정에 있어서 확정론적 공간보간기법 및 크리징 기법과 대체로 비슷한 결과를 나타내는 것으로 분석되었으며, KED 및 크리징 기법에 대한 교차검증 결과 보조변수로서 표고를 사용한 KED 기법이 가장 좋은 결과를 나타내고는 있으나 다른 기법들과 비교했을 때 큰 차이를 보이지 않는 것으로 분석되었다.

우량계와 강우레이다에 의해 관측된 강우량의 공간 분포 비교 (Comparison of Spatial Distributions of Rainfall Derived from Rain Gages and a Radar)

  • 김병식;김형수;양동민
    • 한국습지학회지
    • /
    • 제12권1호
    • /
    • pp.63-73
    • /
    • 2010
  • 수문학적 강우-유출 모형의 가장 중요한 입력 자료는 강우량 자료이다. 기존에는 지상 우량계 관측자료의 점 우량을 티센, 역거리제곱법, 크리깅 등의 내삽방법을 사용하여 유역의 면적강우량을 산정하였다. 그러나 이러한 방법들도 여전히 유역 내의 정확한 강우의 분포 추정에 많은 어려움이 있다. 강우 레이다의 경우 공간적인 측정을 통하여 보다 정확하게 강우의 공간적 분포를 파악할 수 있게 한다. 본 연구에서는 지상 우량계에서 관측된 점 우량을 역거리제곱법(Inverse Distance Squared, IDS)과 크리깅 기법으로 면적강우량의 공간분포를 산출하였고, 이를 강우레이다로부터 추정된 레이다 강우의 공간분포와 비교하였다. 그 결과 레이다에 의해 측정된 강우가 현실적인 강우의 공간 분포를 제공하는 것을 확인하였다.

도시의 삶의 질을 평가하기 위한 화소기반 기법 (A Pixel-based Assessment of Urban Quality of Life)

  • 전병운
    • 한국지리정보학회지
    • /
    • 제9권3호
    • /
    • pp.146-155
    • /
    • 2006
  • 소수의 선행연구는 도시의 삶의 질을 평가하기 위해서 구역을 단위로 사회경제적인 자료와 원격탐사자료를 통합하려고 시도했다. 그러나 이러한 구역을 기반으로 한 접근방법은 한 단위구역의 모든 속성이 그 구역 내에서 균등하게 분포되어 있다고 비현실적으로 전제할 뿐만 아니라, 임의적 지역구획문제 (MAUP) 및 화소기반 환경자료와의 통합이 용이하지 않은 점과 같은 심각한 방법론적 어려움을 초래한다. 구역기반 접근방법에 대한 한 가지 대안은 기본적인 공간단위로서 화소를 이용하는 화소기반 접근방법이다. 본 연구에서는 도시의 삶의 질을 평가하기 위해서 GIS에서의 사회경제적인 자료와 원격탐사자료를 연계하기 위한 화소기반 접근방법을 제시하고자 한다. 화소기반 접근방법은 삶의 질을 평가하기 위해서 구역기반의 사회경제적인 자료를 개별 화소들로 더욱 세분화시키려고 밀도 구분도와 공간 내삽법의 원리를 이용하고, 그 세분화된 사회경제적인 자료와 원격탐사자료를 통합한다. 이러한 화소기반 접근방법은 조지아 풀톤 카운티에 대한 사례연구에서 적용되었고, 같은 사례지역에서의 구역기반 접근방법과도 비교되었다. 본 연구에서 도시의 삶의 질을 평가하기 위한 화소기반 접근방법은 구역단위의 사회경제적인 자료의 세분화를 위해서 많은 처리시간을 필요로 하지만, 미시적인 지표의 산출을 용이하게 하고 사회경제적인 자료와 원격탐사자료간의 효율적인 통합과 그러한 자료들의 시각화를 가능하게 하였다. 이러한 점에서, 본 연구는 화소기반 접근방법이 도시 분석에 있어서 새로운 데이터베이스의 구축과 분석능력의 향상에 기여할 수 있다는 가능성을 제시한다.

  • PDF

퍼지-유전자 알고리즘을 이용한 결측 강우량의 보정 (Filling of Incomplete Rainfall Data Using Fuzzy-Genetic Algorithm)

  • 김도진;장대원;서병하;김형수
    • 한국습지학회지
    • /
    • 제7권4호
    • /
    • pp.97-107
    • /
    • 2005
  • 분포형 모형이 개발되어 지면서 이러한 유역의 공간적인 특성을 고려한 정확한 강우 자료와 조밀한 계측망의 요구는 더욱 커지고 있다. 그러나 현실적으로 조밀한 계측망에 의해 측정된 정확한 강우 자료를 얻기는 쉽지 않다. 일반적으로 강우관측소가 적정 밀도를 가지고 유역을 대표 하도록 설치되어 있으나 부족한 실정이고, 설치되어 있더라도 강우의 시 공간적 변동성을 반영하기가 쉽지 않다. 또한 여러 가지 이유로 결측이 되는 경우도 있다. 강우는 측정된 점 관측 자료를 이용해 유역의 평균 강우분포를 추정하게 된다. 따라서 결측 강우자료는 시간의 연속성 측면에서 그 보정이 반드시 필요하며 보정 후 강우자료의 공간적 분포를 산정할 수 있을 것이다. 본 연구에서는 결측 강우량의 보정을 위하여 퍼지-유전자 알고리즘을 이용하였는데 이 방법을 기존의 방법 즉, 산술평균법, 역거리법, 년정상강우량법, 거리-고도비율법과 비교하였다. 보정결과 기존의 방법은 실측의 70~80%의 정확도를 보였으나 퍼지-유전자 알고리즘은 90%정도의 정확도를 보였다. 특히, 민감도 분석 결과를 바탕으로 수평거리와 고도차에 대한 적정 차수를 제안하였다.

  • PDF

지하수위와 GRACE 자료를 이용한 국내 지하수 함양량 변화 연구 (Study of Groundwater Recharge Rate Change by Using Groundwater Level and GRACE Data in Korea)

  • 전항탁;함세영;조영헌;김진수;박소영;정재열
    • 지질공학
    • /
    • 제29권3호
    • /
    • pp.265-277
    • /
    • 2019
  • 지구 온난화에 따른 기후 변화, 강수량, 강우 강도, 빈도 그리고 강우 유형의 변화는 지하수 함양과 지하수위 변동에 큰 영향을 미친다. 전 세계적인 총 저수량 변화를 파악하는데, GRACE의 월 중력값 이용되어지고 있다. 그러나 지하수위의 공간적인 분포를 표현하기가 쉽지 않으므로, GRACE자료와 지하수위 자료를 정량적으로 연관시키기는 쉽지 않다. 본 연구에서는 세 가지 국지적인 보간법(크리깅, 역 거리 가중값 및 자연 인접)을 이용하여 2002년부터 2016년 까지 국내 지하수 함양 변화량의 공간적인 분포를 추정하였다. 그리고 추정된 월평균 지하수 함양 변화량과 GRACE의 월별 지하수 저장량 변화값을 비교하였다. GRACE자료와 실측 지하수자료의 함양량 변동값은 미약하지만 시간이 경과할수록 감소추세를 보이고 있으며, 연구기간 동안에 지하수 함양 변화량의 평균값은 -0.01 cm/month, 중앙값은 -0.02 cm/month로 산정되었다.