• Title/Summary/Keyword: Areal Population

Search Result 32, Processing Time 0.018 seconds

A Comparative Analysis of Areal Interpolation Methods for Representing Spatial Distribution of Population Subgroups (하위인구집단의 분포 재현을 위한 에어리얼 인터폴레이션의 비교 분석)

  • Cho, Daeheon
    • Spatial Information Research
    • /
    • v.22 no.3
    • /
    • pp.35-46
    • /
    • 2014
  • Population data are usually provided at administrative spatial units in Korea, so areal interpolation is needed for fine-grained analysis. This study aims to compare various methods of areal interpolation for population subgroups rather than the total population. We estimated the number of elderly people and single-person households for small areal units from Dong data by the different interpolation methods using 2010 census data of Seoul, and compared the estimates to actual values. As a result, the performance of areal interpolation methods varied between the total population and subgroup populations as well as between different population subgroups. It turned out that the method using GWR (geographically weighted regression) and building type data outperformed other methods for the total population and households. However, the OLS regression method using building type data performed better for the elderly population, and the OLS regression method based on land use data was the most effective for single-person households. Based on these results, spatial distribution of the single elderly was represented at small areal units, and we believe that this approach can contribute to effective implementation of urban policies.

Effects of Areal Interpolation Methods on Environmental Equity Analysis (면내삽법이 환경적 형평성 분석에 미치는 영향)

  • Jun, Byong-Woon
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.6
    • /
    • pp.736-751
    • /
    • 2008
  • Although a growing number of studies have commonly used a simple areal weighting interpolation method to quantify demographic characteristics of impacted areas in environmental equity analysis, the results obtained are inevitably imprecise because of the method's unrealistic assumption that population is evenly distributed within a census enumeration unit. Two alternative areal interpolation methods such as intelligent areal weighting and regression methods can account for the distributional biases in the estimation of impacted populations by making use of additional information about the geographic distribution of population. This research explores five areal interpolation methods for estimating the population characteristics of impacted areas in environmental equity analysis and evaluates the sensitivity of the outcomes of environmental equity analysis to areal interpolation methods. This study used GIS techniques to allow areal interpolation to be informed by the distribution of land cover types, as inferred from a satellite image. in both the source and target units. Independent samples t-test statistics were measured to verify the environmental equity hypothesis while coefficients of variation were calculated to compare the relative variability and consistency in the socioeconomic characteristics of populations at risk over different areal interpolation methods. Results show that the outcomes of environmental equity analysis in the study area are not sensitive to the areal interpolation methods used in estimating affected populations, but the population estimates within the impacted areas are largely variable as different areal interpolation methods are used. This implies that the use of different areal interpolation methods may to some degree alter the statistical results of environmental equity analysis.

  • PDF

Research on Areal Interpolation Methods and Error Measurement Techniques for Reorganizing Incompatible Regional Data Units : The Population Weighted Interpolation (지역 자료의 공간 단위 재구성 기법 및 에러 검증 : 인구가중치 내삽법)

  • Shin, Jung-Yeop
    • Journal of the Korean association of regional geographers
    • /
    • v.10 no.2
    • /
    • pp.389-406
    • /
    • 2004
  • with the increasing popularity of regional studies, the importance of regional data has been recognized dramatically in recent years. However, due to potential problems from the intrinsic characteristics of aggregate regional data for the research, and incompatible regional units between source and target regional data units, the method for reorganizing the regional data units for a given research analysis should be required. In this regard, the purpose of this research is to review the significant interpolation methods for reorganizing the data units and, based on it, to propose the population weighted interpolation method. For the first purpose, areal weighted interpolation method, pycnophylactic method, dasymetric method, area-to-point method were reviewed. The proposed population-weighted interpolation method was applied to the case study of population census regional data in Erie County, NY, compared with areal weighted interpolation method, pycnophylactic method in terms of several statistical characteristics.

  • PDF

A Comparative Study on the Spatial Statistical Models for the Estimation of Population Distribution

  • Oh, Doo-Ri;Hwang, Chul Sue
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.145-153
    • /
    • 2015
  • This study aims to accurately estimate population distribution more specifically than administrative unites using a RK (Regression-Kriging) model. The RK model is the areal interpolation technique that involves linear regression and the Kriging model. In order to estimate a population’s distribution using a sample region, four different models were used, namely; a regression model, RK model, OK (Ordinary Kriging) model and CK (Co-Kriging) model. The results were then compared with each other. Evaluation of the accuracy and validity of evaluation analysis results were the basis RMSE (Root Mean Square Error), MAE (Mean Absolute Error), G statistic and correlation coefficient (ρ). In the sample regions, every statistic value of the RK model showed better results than other models. The results of this comparative study will be useful to estimate a population distribution of the metropolitan areas with high population density

CUSUM Chart Applied to Monitoring Areal Population Mobility (누적합 관리도를 활용한 생활인구 이상치 탐색)

  • Kim, Hyoung Jun;Sohn, So Young
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.2
    • /
    • pp.241-256
    • /
    • 2020
  • Purpose: Certain places in Seoul such as Shinchon, Hongdae, and Gangnam, often suffer from sudden overflow of mobile population which can cause serious safety problems. This study suggests the application of spatial CUSUM control chart in monitoring areal population mobility data which is recently provided by Seoul metropolitan government. Methods: Monitoring series of standardized local Moran's I enables one to detect spatio-temporal out-of-control status based on the accumulation of past patterns. Moreover, we visualize such pattern map for more intuitive comprehension of the phenomenon. As a case study, we have analyzed the female mobility population aged 25 to 29 appeared in 51 Jipgyegu near Hongik university on fridays from January, 2017 to June, 2018. They are validated by exploring related articles and through local due diligence. Results: The results of the analysis provide insights in figuring out if the change of the mobility population is short-term by particular incident or long-term by spatial alteration, which allows strategic approach in constructing response system. Specific case near popular downtown near Hongik University has shown that newly opened hotels, shops of global sports brand and franchise bookstores have attracted young female population. Conclusion: We expect that the results of our study contribute to planning effective distribution of administrative resources to prepare against drastic increase in floating population. Furthermore, it can be useful in commercial area analysis and age/gender specific marketing strategy for companies.

The Effect of Geographic Units of Analysis on Measuring Geographic Variation in Medical Services Utilization

  • Kim, Agnus M.;Park, Jong Heon;Kang, Sungchan;Hwang, Kyosang;Lee, Taesik;Kim, Yoon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.49 no.4
    • /
    • pp.230-239
    • /
    • 2016
  • Objectives: We aimed to evaluate the effect of geographic units of analysis on measuring geographic variation in medical services utilization. For this purpose, we compared geographic variations in the rates of eight major procedures in administrative units (districts) and new areal units organized based on the actual health care use of the population in Korea. Methods: To compare geographic variation in geographic units of analysis, we calculated the age-sex standardized rates of eight major procedures (coronary artery bypass graft surgery, percutaneous transluminal coronary angioplasty, surgery after hip fracture, knee-replacement surgery, caesarean section, hysterectomy, computed tomography scan, and magnetic resonance imaging scan) from the National Health Insurance database in Korea for the 2013 period. Using the coefficient of variation, the extremal quotient, and the systematic component of variation, we measured geographic variation for these eight procedures in districts and new areal units. Results: Compared with districts, new areal units showed a reduction in geographic variation. Extremal quotients and inter-decile ratios for the eight procedures were lower in new areal units. While the coefficient of variation was lower for most procedures in new areal units, the pattern of change of the systematic component of variation between districts and new areal units differed among procedures. Conclusions: Geographic variation in medical service utilization could vary according to the geographic unit of analysis. To determine how geographic characteristics such as population size and number of geographic units affect geographic variation, further studies are needed.

Development of An Areal Elderly Migration Model for Demand Estimation of Rural Retirement Community (농촌지역 실버타운의 수요예측을 위한 노인인구이동 모형의 개발)

  • Jung, Nam-Su;Lee , Jeong-Jae;Kim , Han-Joong;Yoon , Seong-Su
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.2
    • /
    • pp.29-37
    • /
    • 2004
  • An areal elderly migration model (AEMM) was developed to assess the demand of rural development projects targeted towards elderly people. The AEMM was developed with adaptation of the gravity model to represent spatial interaction regarding amenities. Areal characteristics were classified for estimating the amenities from the perspective of net migration. From 1990 to 2000, data were acquired from USCB, PASDA, PAHEALTH, PADCNR, PFBC, and NCDC in 67 Pennsylvania counties for analysis and application. The results revealed that elderly migration can be explained not only by areal characteristics but also by spatial interaction considering the population, distances, and amenities of surrounding areas.

GIS-Based Methods to Assess the Population Distribution Criteria for Undesirable Facilities: The Case of Nuclear Power Plants (비선호 시설의 인구분포 관련 입지기준 평가를 위한 GIS-기반 방법론 연구 -원자력 발전소의 경우-)

  • Lee, Sang-Il;Cho, Daeheon
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.5
    • /
    • pp.755-774
    • /
    • 2012
  • The main objective of the study is to propose GIS-based methods to assess the population distribution criteria for undesirable facilities such as nuclear power plants. First of all, a review of the relevant criteria was conducted for the official documents compiled by such institutions as IAEA (International Atomic Energy Agency), U.S. NRC (Nuclear Regulatory Commission), and some national institutes including the Korea Institute of Nuclear Safety. It is informed from the review that the fundamental principle underlying the various criteria is to maximize the distance between a plant and the nearest population center. It is realized that two interrelated GIS-based techniques need to be devised to put the principle into practice; sophisticated ways of representing population distribution and identifying population centers. A dasymetric areal interpolation is proposed for the former and cell-based and area-based critical density methods are introduced. Grid-based population distributions at various spatial resolutions are created by means of the dasymetric areal interpolation. By applying the critical density methods to the gridded population distribution, some population centers satisfying the population size and density criteria can be identified. These methods were applied to the case of the Gori-1 nuclear power plant and their strengths and limitations were discussed. It was revealed that the assessment results could vary depending upon which method was employed and what values were chosen for various parameters. This study is expected to contribute to foster the applications of methods and techniques developed in geospatial analysis and modeling to the site selection and evaluation.

  • PDF

A Hybrid Dasymetric Mapping for Population Density Surface using Remote Sensing Data (원격탐사자료를 바탕으로 인구밀도 분포 작성을 위한 하이브리드 대시메트릭 지도법)

  • Kim, Hwa-Hwan;Choi, Jin-Mu
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.1
    • /
    • pp.67-80
    • /
    • 2011
  • Choropleth mapping of population distribution is based on the assumption that people are uniformly distributed throughout each enumeration unit. Dasymetric mapping technique improves choropleth mapping by refining spatially aggregated data with residential information. Further, pycnophylactic interpolation can upgrade dasymetric mapping by considering population distribution of neighboring areas, while preserving the volumes of original units. This study proposed a combined solution of dasymetric mapping and pycnophylactic interpolation to improve the accuracy of population density distribution. Specifically, the dasymetric method accounts for the spatial distribution of population within each census unit, while pycnophylactic interpolation considers population distribution of neighboring area. This technique is demonstrated with 1990 census data of the Athens, GA. with land use land cover information derived from remotely-sensed imagery for the areal extent of populated areas. The results are evaluated by comparison between original population counts of smaller census units (census block groups) and population counts of the grid map built from larger units (census tracts) aggregated to the same areal units. The estimated populations indicate a satisfactory level of accuracy. Population distribution acquired by the suggested method can be re-aggregated to any type of geographic boundaries such as electoral boundaries, school districts, and even watershed for a variety of applications.

A Study on the Exploratory Spatial Data Analysis of the Distribution of Longevity Population and the Scale Effect of the Modifiable Areal Unit Problem(MAUP) (장수 인구의 분포 패턴에 관한 탐색적 공간 데이터 분석과 수정 가능한 공간단위 문제(MAUP)의 Scale Effect에 관한 연구)

  • Choi, Don-Jeong;Suh, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.40-53
    • /
    • 2013
  • Most of the existing domestic studies to identify the distribution of longevity population and influencing factors oriented confirmatory approach. Furthermore, most of the studies in this research topic simply have used their own definition of spatial unit of analysis or employed arbitrary spatial units of analysis according to data availability. These research approaches can not sufficiently reflect the spatial characteristic of longevity phenomenon and exposed to the Modifiable Aerial Unit Problem(MAUP). This research performed the Exploratory Spatial Data Analysis(ESDA) to identify the spatial autocorrelation of the distribution of longevity population and investigated whether the modifiable areal unit problem in the aspect of scale effect using spatial population data in Korea. We used Si_Gun_Gu and Eup_Myeon_Dong as two different spatial units of regional longevity indicators measured. Then, we applied Getis-Ord Gi* to investigate the existence of spatial hot spots and cold spots. The results from our analysis show that there exist statistically significant spatial autocorrelation and spatial hot spots and cold spots of regional longevity at both Si_Gun_Gu and Eup_Myeon_Dong levels. This result implies that the modifiable areal unit problem does exist in the studies of spatial patterns of longevity population distribution. The demand for longevity researches would be increased inevitably. In addition, there were apparent differences for the global spatial autocorrelation and local spatial cluster which calculated different spatial units such as Si_Gun_Gu and Eup_Myeon_Dong and this can be seen as scale effect of MAUP. The findings from our analysis show that any study in this topic can mislead results when the modifiable areal unit problem and spatial autocorrelation are not explicitly considered.