• 제목/요약/키워드: Area-to-point regression kriging

검색결과 6건 처리시간 0.016초

Development of an R-based Spatial Downscaling Tool to Predict Fine Scale Information from Coarse Scale Satellite Products

  • Kwak, Geun-Ho;Park, No-Wook;Kyriakidis, Phaedon C.
    • 대한원격탐사학회지
    • /
    • 제34권1호
    • /
    • pp.89-99
    • /
    • 2018
  • Spatial downscaling is often applied to coarse scale satellite products with high temporal resolution for environmental monitoring at a finer scale. An area-to-point regression kriging (ATPRK) algorithm is regarded as effective in that it combines regression modeling and residual correction with area-to-point kriging. However, an open source tool or package for ATPRK has not yet been developed. This paper describes the development and code organization of an R-based spatial downscaling tool, named R4ATPRK, for the implementation of ATPRK. R4ATPRK was developed using the R language and several R packages. A look-up table search and batch processing for computation of ATP kriging weights are employed to improve computational efficiency. An experiment on spatial downscaling of coarse scale land surface temperature products demonstrated that this tool could generate downscaling results in which overall variations in input coarse scale data were preserved and local details were also well captured. If computational efficiency can be further improved, and the tool is extended to include certain advanced procedures, R4ATPRK would be an effective tool for spatial downscaling of coarse scale satellite products.

영역-점 회귀 크리깅 기반 다중센서 위성영상의 공간-분광 융합: 고해상도 적색 경계 및 단파 적외선 밴드 생성 실험 (Spatio-spectral Fusion of Multi-sensor Satellite Images Based on Area-to-point Regression Kriging: An Experiment on the Generation of High Spatial Resolution Red-edge and Short-wave Infrared Bands)

  • 박소연;강솔아;박노욱
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.523-533
    • /
    • 2022
  • 이 논문에서는 상호보완적인 공간 및 분광해상도를 가진 다중센서 위성영상을 이용하여 공간해상도와 분광해상도를 향상시키기 위해 영역-점 회귀 크리깅(area-to-point regression kriging, ATPRK) 기반의 2단계 spatio-spectral fusion method (2SSFM)을 제안하였다. 2SSFM은 ATPRK와 random forest 회귀 모형을 결합하여 다중센서 위성영상에서 높은 공간해상도를 갖는 분광 밴드를 예측한다. 첫 번째 단계에서는 다중센서 위성영상 사이의 공간해상도 차이를 감소시키기 위해 ATPRK 기반 공간 상세화를 수행한다. 두 번째 단계에서는 다중센서 위성영상 사이의 분광 밴드의 관계성을 정량화하기 위해 random forest를 이용한 회귀 모델링을 적용하였다. 2SSFM의 예측 성능은 적색 경계와 단파 적외선 밴드를 생성하는 사례 연구를 통해 평가하였다. 사례 연구에서 2SSFM은 실제 분광 밴드와 유사한 분광패턴을 보이면서 공간해상도가 향상된 적색 경계와 단파 적외선 밴드를 생성할 수 있었으며, 2SSFM가 고해상도 위성영상에서 제공하지 않은 분광 밴드 생성에 유용함을 확인할 수 있었다. 따라서 2SSFM을 통해 실제로 획득 불가능하지만 환경 모니터링에 효과적인 분광 밴드를 예측함으로써 다양한 분광 지수를 생성할 수 있을 것으로 기대된다.

Assessing the Impacts of Errors in Coarse Scale Data on the Performance of Spatial Downscaling: An Experiment with Synthetic Satellite Precipitation Products

  • Kim, Yeseul;Park, No-Wook
    • 대한원격탐사학회지
    • /
    • 제33권4호
    • /
    • pp.445-454
    • /
    • 2017
  • The performance of spatial downscaling models depends on the quality of input coarse scale products. Thus, the impact of intrinsic errors contained in coarse scale satellite products on predictive performance should be properly assessed in parallel with the development of advanced downscaling models. Such an assessment is the main objective of this paper. Based on a synthetic satellite precipitation product at a coarse scale generated from rain gauge data, two synthetic precipitation products with different amounts of error were generated and used as inputs for spatial downscaling. Geographically weighted regression, which typically has very high explanatory power, was selected as the trend component estimation model, and area-to-point kriging was applied for residual correction in the spatial downscaling experiment. When errors in the coarse scale product were greater, the trend component estimates were much more susceptible to errors. But residual correction could reduce the impact of the erroneous trend component estimates, which improved the predictive performance. However, residual correction could not improve predictive performance significantly when substantial errors were contained in the input coarse scale data. Therefore, the development of advanced spatial downscaling models should be focused on correction of intrinsic errors in the coarse scale satellite product if a priori error information could be available, rather than on the application of advanced regression models with high explanatory power.

Impact of Trend Estimates on Predictive Performance in Model Evaluation for Spatial Downscaling of Satellite-based Precipitation Data

  • Kim, Yeseul;Park, No-Wook
    • 대한원격탐사학회지
    • /
    • 제33권1호
    • /
    • pp.25-35
    • /
    • 2017
  • Spatial downscaling with fine resolution auxiliary variables has been widely applied to predict precipitation at fine resolution from coarse resolution satellite-based precipitation products. The spatial downscaling framework is usually based on the decomposition of precipitation values into trend and residual components. The fine resolution auxiliary variables contribute to the estimation of the trend components. The main focus of this study is on quantitative analysis of impacts of trend component estimates on predictive performance in spatial downscaling. Two regression models were considered to estimate the trend components: multiple linear regression (MLR) and geographically weighted regression (GWR). After estimating the trend components using the two models,residual components were predicted at fine resolution grids using area-to-point kriging. Finally, the sum of the trend and residual components were considered as downscaling results. From the downscaling experiments with time-series Tropical Rainfall Measuring Mission (TRMM) 3B43 precipitation data, MLR-based downscaling showed the similar or even better predictive performance, compared with GWR-based downscaling with very high explanatory power. Despite very high explanatory power of GWR, the relationships quantified from TRMM precipitation data with errors and the auxiliary variables at coarse resolution may exaggerate the errors in the trend components at fine resolution. As a result, the errors attached to the trend estimates greatly affected the predictive performance. These results indicate that any regression model with high explanatory power does not always improve predictive performance due to intrinsic errors of the input coarse resolution data. Thus, it is suggested that the explanatory power of trend estimation models alone cannot be always used for the selection of an optimal model in spatial downscaling with fine resolution auxiliary variables.

Ensemble Downscaling of Soil Moisture Data Using BMA and ATPRK

  • Youn, Youjeong;Kim, Kwangjin;Chung, Chu-Yong;Park, No-Wook;Lee, Yangwon
    • 대한원격탐사학회지
    • /
    • 제36권4호
    • /
    • pp.587-607
    • /
    • 2020
  • Soil moisture is essential information for meteorological and hydrological analyses. To date, many efforts have been made to achieve the two goals for soil moisture data, i.e., the improvement of accuracy and resolution, which is very challenging. We presented an ensemble downscaling method for quality improvement of gridded soil moisture data in terms of the accuracy and the spatial resolution by the integration of BMA (Bayesian model averaging) and ATPRK (area-to-point regression kriging). In the experiments, the BMA ensemble showed a 22% better accuracy than the data sets from ESA CCI (European Space Agency-Climate Change Initiative), ERA5 (ECMWF Reanalysis 5), and GLDAS (Global Land Data Assimilation System) in terms of RMSE (root mean square error). Also, the ATPRK downscaling could enhance the spatial resolution from 0.25° to 0.05° while preserving the improved accuracy and the spatial pattern of the BMA ensemble, without under- or over-estimation. The quality-improved data sets can contribute to a variety of local and regional applications related to soil moisture, such as agriculture, forest, hydrology, and meteorology. Because the ensemble downscaling method can be applied to the other land surface variables such as temperature, humidity, precipitation, and evapotranspiration, it can be a viable option to complement the accuracy and the spatial resolution of satellite images and numerical models.

미세먼지(PM10)의 지역적 대푯값 산정 방법에 관한 연구 - 서울특별시를 대상으로 (Estimation of Representative Area-Level Concentrations of Particulate Matter(PM10) in Seoul, Korea)

  • 송인상;김선영
    • 한국지리정보학회지
    • /
    • 제19권4호
    • /
    • pp.118-129
    • /
    • 2016
  • 미세먼지($PM_{10}$)의 건강영향에 대한 많은 연구들은 정부의 대기오염 측정자료를 이용해서 악영향을 보고했다. 정부 대기오염 측정자료가 제한된 수의 측정소에서 생산되는 반면, 사망률이나 유병률과 같은 정부생산 건강결과 자료는 지역별로 집계되어 공개된다. 따라서 정부에서 생산하는 건강통계자료를 이용해서 건강영향을 분석하기 위해서는, $PM_{10}$ 농도의 지역적인 대푯값을 산출할 필요가 있다. 본 연구에서는 서울특별시를 대상으로 이전 연구에서 개발된 점 사상에 대한 $PM_{10}$ 농도 예측 모형을 이용하여 구별 대푯값을 산정하였다. 이를 위해, 세 가지 종류의 위치들을 대상으로 지점들을 생성한 후, 그 지점들에 예측한 $PM_{10}$ 농도의 구별 평균으로 구별 대푯값을 구했다. 세 가지 위치는 16,230개 집계구 내 가장 넓은 주거지역의 중심점, 424개 동 주민센터, 610개 1km 격자의 중심점이었다. 위치별 구별 대푯값들을 비교하기 위하여 측정치와의 관련성 및 추정치 간 관련성을 탐색하였다. 측정치와의 비교 결과, 측정치와 세 가지 구별 대푯값 추정치들 간의 관련성은 위치의 인구 대표성이 높아짐에 따라 향상되었고($R^2=0.06-0.59$), 상호비교에서는 격자 중심점을 이용한 추정치가 다른 추정치들과의 관련성이 상대적으로 낮았다(0.35-0.47). 본 연구는 $PM_{10}$의 지역별 평균 농도를 추정함으로써 향후 정부 통계에 기반한 전국 규모의 지역 단위 건강영향분석 연구에 기여할 수 있을 것으로 기대된다.