• 제목/요약/키워드: Area-specific resistance

검색결과 210건 처리시간 0.029초

배유 특이 프로모터에 의해 유도된 GUS 유전자의 형질전환 담배 내에서의 발현 및 유전 양상 (Expression and Inheritance Patterns of Gus Gene Driven by an Endosperm-Specific Promoter in Transgenic Tobacco)

  • 박영두;김형석
    • 원예과학기술지
    • /
    • 제18권5호
    • /
    • pp.594-598
    • /
    • 2000
  • 본 실험은 형질전환 담배내에서의 배유 특이 promoter에 의한 gus 유전자의 조직 특이적 발현 여부와 전이유전자의 후대로의 유전 양상을 확인하고자 수행하였다. 배유 특이 promoter에 의해 유도되는 gus 유전자(Z4pro-gus)와 kanamycin 저항성유전자를 운반하는 BV3 construct를 A. tumerfaciens을 이용하여 담배 형질전환체를 유기시켰다. 형질전환체 중에서 8개체를 선발하여 nptII primer를 이용하여 PCR을 실시한 결과 8개체 모두에서 700bp의 PCR 산물을 얻을 수 있었다. Promoter에 따른 유전자의 발현양상을 알아보기 위하여 Z4pro-gus가 전이된 형질전환체의 잎과 CaMV35S와 gus 유전자(35Spro-gus)로 구성된 pBI121 construct를 전이시킨 형질전환체의 잎으로부터의 발색정도를 비교하였다. 그 결과 Z4pro-gus가 전이된 형질전환체의 경우 잎에서 매우 부분적으로 극소량 발색되었으나 35Spro-gus가 전이된 형질전환체의 잎에서는 상대적으로 많은 양의 발색정도를 보여 promoter에 따른 발현정도의 차이를 보였다. 보다 명확한 Z4 promoter의 조직 특이 발현 양상을 확인하기 위하여 Z4pro-gus로 형질전환시킨 $T_0$ 식물체를 자가수분하여 얻은 $R_1$ 종자와 35Spro-gus를 형질전환시켜 같은 방법으로 얻은 $R_1$ 종자를 histochemical assay하였다. 그 결과 35Spro-gus로 형질전환된 담배 종자는 절단면 전체에서 gus 유전자가 발현되어 배유뿐만 아니라 종자 내 다른 조직에서도 발색되는 양상을 나타내었으나 Z4pro-gus를 형질전환 시켜 얻은 종자의 경우는 배유 부분만이 조직 특이적으로 파랗게 발색되었고 배 또는 그 이외의 조직에서는 gus 발색이 전혀 관찰되지 않았다. Kanamycin 저항성검정을 실시한 결과 모든 계통에서 전이유전자가 후대로 안정적으로 전이됨을 확인할 수 있었다.

  • PDF

고체산화물 연료전지의 Samarium Oxide 혼합 공기극에 대한 열특성 분석 (Thermal Characteristics of Samarium-based Composite Cathode ($Sm_{0.5}Sr_{0.5}CoO_{3-\delta}/ Sm_{0.2}Ce_{0.8}O_{1.9}$) for Intermediate Temperature-operating Solid Oxide Fuel Cell)

  • 백승욱;배중면
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2021-2025
    • /
    • 2007
  • Performance of single cell at solid oxide fuel cell (SOFC) system is largely affected by electrocatalytic and thermal properties of cathode. Samarium-based perovskite oxide material is recently recognized as promising cathode material for intermediate temperature-operating SOFC due to its high electrocatalytic property. Perovskite structured $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$ and its composite material, $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}/Sm_{0.2}Ce_{0.8}O_{1.9}$ were investigated in terms of area specific resistance (ASR), thermal expansion coefficient (TEC), thermal cycling and long term performance. $Sm_{0.2}Ce_{0.8}O_{1.9}$ was used as electrolyte material. Electrochemical ac impedance spectroscopy (EIS) and dilatometer were used to measure the cathodic properties. Composite cathode ($Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$: $Sm_{0.2}Ce_{0.8}O_{1.9}$ = 6:4) showed a good ASR of 0.13${\Omega}$ $cm^2$ at 650$^{\circ}C$ and its TEC value was 12.3${\times}$10-6/K at 600$^{\circ}C$ which is similar to the value of ceria-based electrolyte of 11.9${\times}$10-6/K. Performance of composite cathode was maintained with no degradation even after 13 times thermal cycle test.

  • PDF

New Generation of Lead Free Paste Development

  • Albrecht Hans Juergen;Trodler K. G.
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2004년도 ISMP Pb-free solders and the PCB technologies related to Pb-free solders
    • /
    • pp.233-241
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces strictly related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

New Generation of Lead Free Solder Spheres 'Landal - Seal'

  • Walter H.;Trodler K. G.
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2004년도 ISMP Pb-free solders and the PCB technologies related to Pb-free solders
    • /
    • pp.211-219
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces stric시y related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials. In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

Performance of Magnesia Cement Using MgCO3 and Serpentine

  • Lee, Jong-Kyu;Soh, Jung-Sub
    • 한국세라믹학회지
    • /
    • 제53권1호
    • /
    • pp.116-121
    • /
    • 2016
  • The amount of carbon dioxide ($CO_2$) released while producing building materials is substantial and has been targeted as a leading contributor to global climate change. One of the most typical methods of reducing $CO_2$ in building materials is the addition of slag and fly ash, like pozzolan material another method is to reduce $CO_2$ production by developing carbon negative cement. MgO-based cement from the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. It is also believed that adding reactive MgO to Portland-pozzolan cements can improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, basic research on magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as the main starting materials, as well as blast furnace slag for the mineral admixture, was carried out for industrial waste material recycling. In order to increase the overall hydration activity, $MgCl_2$ was also added. In the case of the addition of $MgCl_2$as accelerating admixture, there was a promoting effect on the compressive strength. This was found to be due to the production of needle-like dense Mg-Cl hydrates. Mgnesia cement has a high viscosity due to its high specific surface area therefore, when the PC-based dispersing agent was added at a level of more than 1.0%, it had the effect of improving fluidity. In particular, the addition of $MgCl_2$ in magnesia cement using $MgCO_3$and magnesium silicate ore (serpentine) as main starting materials led to a lower expansion ratio and an increase in the freeze-thaw resistance finally, the addition of $MgCl_2$ as accelerating admixture led to good overall durability.

천연 유기산을 이용한 배관 스케일 세정제 성능에 관한 연구 (A Study on the Performance of Pipe Scale Cleaner using Natural Organic Acid)

  • 강형석;양원석;김영일;김선혜;최동희
    • 설비공학논문집
    • /
    • 제29권10호
    • /
    • pp.530-537
    • /
    • 2017
  • Scales generated inside pipes cause negative effects on heat transfer performance, pressure loss and flow rate due to increased thermal resistance and reduced flow cross-sectional area. If these scales are not prevented or eliminated, thermal-fluid performance of the facilities can be deteriorated, or in extreme cases, accidents such as explosion due to overheating can occur. There are two ways to remove the scales, physically and chemically. Removing the scales physically needs specific machines which are expensive, and removing them chemically may provoke corrosion or shorten the age of the facilities. In this study, an eco-friendly pipe scale cleaner using natural organic acid is developed by applying the concept of a limestone cave generation. The manufactured scale cleaner is applied to remove the scales in industrial, water heating and urinal pipes. The results show that this cleaner removes scales more effectively and safely compared to existing scale treatments. Scale removal efficiencies of this work is 1.2~10.7 times for industrial pipes and 1.8~15.5 times for boiler water heating pipes higher than those of conventional cleaners.

Observational failure analysis of precast buildings after the 2012 Emilia earthquakes

  • Minghini, Fabio;Ongaretto, Elena;Ligabue, Veronica;Savoia, Marco;Tullini, Nerio
    • Earthquakes and Structures
    • /
    • 제11권2호
    • /
    • pp.327-346
    • /
    • 2016
  • The 2012 Emilia (Italy) earthquakes struck a highly industrialized area including several thousands of industrial prefabricated buildings. Due to the lack of specific design and detailing for earthquake resistance, precast reinforced concrete (RC) buildings suffered from severe damages and even partial or total collapses in many cases. The present study reports a data inventory of damages from field survey on prefabricated buildings. The damage database concerns more than 1400 buildings (about 30% of the total precast building stock in the struck region). Making use of the available shakemaps of the two mainshocks, damage distributions were related with distance from the nearest epicentre and corresponding Pseudo-Spectral Acceleration for a period of 1 second (PSA at 1 s) or Peak Ground Acceleration (PGA). It was found that about 90% of the severely damaged to collapsed buildings included into the database stay within 16 km from the epicentre and experienced a PSA larger than 0.12 g. Moreover, 90% of slightly to moderately damaged buildings are located at less than 25 km from the epicentre and were affected by a PSA larger than 0.06 g. Nevertheless, the undamaged buildings examined are almost uniformly distributed over the struck region and 10% of them suffered a PSA not lower than 0.19g. The damage distributions in terms of the maximum experienced PGA show a sudden increase for $PGA{\geq}0.28g$. In this PGA interval, 442 buildings were collected in the database; 55% of them suffered severe damages up to collapse, 32% reported slight to moderate damages, whereas the remaining 13% resulted undamaged.

나노 사이즈 입자가 포함된 양극 활물질 함량에 따른 차량용 AGM 연축전지 성능 특성 (Performance characteristics of AGM lead acid battery with the content of positive plate incorporating nano-size additive material)

  • 임태섭;김성준;김상동;양승철;정연길
    • 한국결정성장학회지
    • /
    • 제30권4호
    • /
    • pp.123-130
    • /
    • 2020
  • AGM 연축전지(Absorbent Glass Mat Lead-Acid Battery)의 수명 특성을 결정짓는 양극 활물질(Active Material)의 주요 구성 결정인 4BS(Tetrabasic lead Sulfate)의 입자 크기를 제어하기 위해 4BS Nano Seed(NS)를 적용 중에 있다. 4BS NS 적용 시, 나노 입자 특성상 분산 안정성이 저하되어 제 기능을 다하지 못한다. 이를 개선하기 위해 기존 첨가제인 광명단(Red Lead)에 나노 입자의 4BS seed가 포함된 Incorporated Nano Seed(INS)를 함량별로 첨가하여 양극판 분석과 제품 성능을 평가하였다. INS 함량이 증가할수록 4BS 입자 크기는 작아지면서 균일해지는 특성을 확인할 수 있었으며, 반응 비표면적 증가에 따른 고율 방전 특성도 향상되는 것을 알 수 있었다. 극판 제조 공정에서의 개별 극판에 대한 입도 분포의 편차를 확인하기 위해, AGM 연축전지 200 대 대한 내부 저항 및 전압 검사를 진행하였으며 제품 제조 공정 품질 편차가 감소하는 것을 확인하였다.

Nickel Silicide Nanowire Growth and Applications

  • Kim, Joondong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.215-216
    • /
    • 2013
  • The silicide is a compound of Si with an electropositive component. Silicides are commonly used in silicon-based microelectronics to reduce resistivity of gate and local interconnect metallization. The popular silicide candidates, CoSi2 and TiSi2, have some limitations. TiSi2 showed line width dependent sheet resistance and has difficulty in transformation of the C49 phase to the low resistive C54. CoSi2 consumes more Si than TiSi2. Nickel silicide is a promising material to substitute for those silicide materials providing several advantages; low resistivity, lower Si consumption and lower formation temperature. Nickel silicide (NiSi) nanowire (NW) has features of a geometrically tiny size in terms of diameter and significantly long directional length, with an excellent electrical conductivity. According to these advantages, NiSi NWs have been applied to various nanoscale applications, such as interconnects [1,2], field emitters [3], and functional microscopy tips [4]. Beside its tiny geometric feature, NW can provide a large surface area at a fixed volume. This makes the material viable for photovoltaic architecture, allowing it to be used to enhance the light-active region [5]. Additionally, a recent report has suggested that an effective antireflection coating-layer can be made with by NiSi NW arrays [6]. A unique growth mechanism of nickel silicide (NiSi) nanowires (NWs) was thermodynamically investigated. The reaction between Ni and Si primarily determines NiSi phases according to the deposition condition. Optimum growth conditions were found at $375^{\circ}C$ leading long and high-density NiSi NWs. The ignition of NiSi NWs is determined by the grain size due to the nucleation limited silicide reaction. A successive Ni diffusion through a silicide layer was traced from a NW grown sample. Otherwise Ni-rich or Si-rich phase induces a film type growth. This work demonstrates specific existence of NiSi NW growth [7].

  • PDF

정전 분무 공정으로 제조된 Fe-Cr-Al 분말 다공체 금속의 고온 산화 특성에 미치는 기공 크기의 영향 (Effect of Cell Size on the High Temperature Oxidation Properties of Fe-Cr-Al Powder Porous Metal Manufactured by Electro-spray Process)

  • 오재성;공영민;김병기;이기안
    • 한국분말재료학회지
    • /
    • 제21권1호
    • /
    • pp.55-61
    • /
    • 2014
  • Fe-Cr-Al powder porous metal was manufactured by using new electro-spray process. First, ultra-fine fecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid (0.05~0.5% powders) was dispersed on Polyurethane foam through the electro-spray process. And then degreasing and sintering processes were conduced. In order to examine the effect of cell size ($200{\mu}m$, $450{\mu}m$, $500{\mu}m$) in process, pre-samples were sintered for two hours at temperature of $1450^{\circ}C$, in $H_2$ atmospheres. A 24-hour thermo gravimetric analysis test was conducted at $1000^{\circ}C$ in a 79% $N_2$ + 21% $O_2$ to investigate the high temperature oxidation behavior of powder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased with increasing cell size. In the $200{\mu}m$ porous metal with a thinner strut and larger specific surface area, the depletion of the stabilizing elements such as Al and Cr occurred more quickly during the high-temperature oxidation compared with the 450, $500{\mu}m$ porous metals.