• 제목/요약/키워드: Area-specific resistance

Search Result 210, Processing Time 0.024 seconds

Feasibility of Optoelectronic Neural Stimulation Shown in Sciatic Nerve of Rats (흰쥐의 좌골 신경 자극을 통한 광전 자극의 가능성에 대한 연구)

  • Kim Eui tae;Oh Seung jae;Baac Hyoung won;Kim Sung june
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.611-615
    • /
    • 2004
  • A neural prostheses can be designed to permit stimulation of specific sites in the nervous system to restore their functions, lost due to disease or trauma. This study focuses on the feasibility of optoelecronic stimulation into nervous system. Optoelectronic stimulation supplies, power and signal into the implanted optical detector inside the body by optics. It can be effective strategy especially on the retinal prosthesis, because it enables the non-invasive connection between the external source and internal detector through natural optical window 'eye'. Therefore, we designed an effective neural stimulating setup by optically based stimulation. Stimulating on the sciatic nerve of a rat with proper depth probe through optical stimulation needs higher ratio of current spreading through the neural surface, because of high impedance of neural interface. To increase the insertion current spreading into the neuron, we used a parallel low resistance compared to load resistance organic interface and calculated the optimized outer parallel resistance for maximum insertion current with the assumption of limited current by photodiode. Optimized outer parallel resistance was at a range of 500Ω-700Ω and a current was at a level between 580uA and 650uA. Stimulating current efficiency from initial photodiode induced current was between 47.5 and 59.7%. Various amplitude and frequency of the optical stimulation on the sciatic nerve showed the reliable visual tremble, and the action potential was also recorded near the stimulating area. These result demonstrate that optoelectronic stimulation with no bias can be applied to the retinal prosthesis and other neuroprosthetic area.

A Study on Large Area Roll Projection Welding for Metallic Sandwich Plate : Part 2 - Numerical Analysis (금속 샌드위치 판재 대면적 롤 프로젝션 용접에 관한 연구 : Part 2 - 수치 해석)

  • Kim, Jong-Hwa;Ahn, Jun-Su;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.92-96
    • /
    • 2009
  • Metallic sandwich plate has many good properties such as high specific stiffness, high specific strength, good impact absorptivity, effective thermal insulation and soundproofing. In our study, a new bonding method, 3-layer roll projection welding, is introduced to fabricate the metallic sandwich plate. The new method uses a pair of roll electrodes like the seam welding, and projection welding is made at two internal interfaces of the 3-layer weldment consisting of a structured inner sheet and a pair of skin sheets. During the welding process, skin sheet temperature are measured to produce metallic sandwich plate with uniform and good quality. But it is difficult to observe or measure the temperature at the welding points during welding process because the welding points exist at the internal interfaces. Therefore FEM numerical analysis using ABAQUS is conducted to estimate the generated heat at the welding points with different welding conditions.

Selective Corrosion of Socket Welds of Stainless Steel Pipes Under Seawater Atmosphere (해수분위기에서 스테인리스강 배관 소켓 용접부의 선택적 부식)

  • Boo, Myung-Hwan;Lee, Jang-Wook;Lee, Jong-Hoon
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.224-230
    • /
    • 2020
  • Stainless steel has excellent corrosion resistance. The drawback is that pitting occurs easily due to the concentration of chloride. In addition, corrosion of socket weld, which is structurally and chemically weaker than the other components of the pipe, occurs rapidly. Since these two phenomena overlap, pinhole leakage occurs frequently in the seawater pipe socket welds made of stainless steel at the power plants. To analyze this specific corrosion, a metallurgical analysis of the stainless steel socket welds, where the actual corrosion occurred during the power plant operation, was performed. The micro-structure and chemical composition of each socket weld were analyzed. In addition, selective corrosion of the specific micro-structure in a mixed dendrite structure comprising γ-austenite (gamma-phase iron) and δ-ferrite (iron at high temperature) was investigated based on the characteristic micro-morphology and chemical composition of the corroded area. Finally, the different corrosion stages and characteristics of socket weld corrosion are summarized.

Comparison of Electrical Properties of β-Gallium Oxide (β-Ga2O3) Power SBDs with Guard Ring Structures (Guard Ring 구조에 따른 β-산화갈륨(β-Ga2O3) 전력 SBDs의 전기적 특성 비교)

  • Hoon-Ki Lee;Kyujun Cho;Woojin Chang;Jae-Kyoung Mun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.208-214
    • /
    • 2024
  • This reports the electrical properties of single-crystal β-gallium oxide (β-Ga2O3) vertical Schottky barrier diodes (SBDs) with a different guard ring structure. The vertical Schottky barrier diodes (V-SBDs) were fabricated with two types guard ring structures, one is with metal deposited on the Al2O3 passivation layer (film guard ring: FGR) and the other is with vias formed in the Al2O3 passivation layer to allow the metal to contact the Ga2O3 surface (metal guard ring: MGR). The forward current values of FGR and MGR V-SBD are 955 mA and 666 mA at 9 V, respectively, and the specific on-resistance (Ron,sp) is 5.9 mΩ·cm2 and 29 mΩ·cm2. The series resistance (Rs) in the nonlinear section extracted using Cheung's formula was 6 Ω, 4.8 Ω for FGR V-SBD, 10.7 Ω, 6.7 Ω for MGR V-SBD, respectively, and the breakdown voltage was 528 V for FGR V-SBD and 358 V for MGR V-SBD. Degradation of electrical characteristics of the MGR V-SBD can be attributed to the increased reverse leakage current caused by the guard ring structure, and it is expected that the electrical performance can be improved by preventing premature leakage current when an appropriate reverse voltage is applied to the guard ring area. On the other hand, FGR V-SBD shows overall better electrical properties than MGR V-SBD because Al2O3 was widely deposited on the Ga2O3 surface, which prevent leakage current on the Ga2O3 surface.

Antimicrobial-resistance Profiles and Virulence Genes of Vibrio parahaemolyticus Isolated from Seawater in the Wando Area (완도해역 해수에서 분리한 장염비브리오(Vibrio parahaemolyticus)의 항균제 내성 및 병원성 유전자의 특징)

  • Kim, Tae-Ok;Eum, In-Seon;Jo, Sang-Man;Kim, Hee-Dai;Park, Kwon-Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.3
    • /
    • pp.220-226
    • /
    • 2014
  • Sixty-seven Vibrio parahaemolyticus isolates from surface seawater from the Wando area, on the southern coast of Korea, were analyzed for their susceptibility to 15 different antimicrobials and the presence of virulence genes. According to the disk diffusion susceptibility test, all of the strains studied were resistant to ampicillin and oxacillin, while decreasing percentages were resistant to vancomycin (64.2%), streptomycin (56.7%), amikacin (31.3%), kanamycin (22.3%), cephalothin (20.9%), erythromycin (10.4%), ciprofloxacin (4.5%), and tetracycline (3.0%). All of the strains were susceptible to five antimicrobials: chloramphenicol, gentamycin, nalidixic acid, sulfamethoxazole/trimethoprim, and trimethoprim. Fifty-nine isolates (88.1%) were resistant to three or more classes of antimicrobial and defined as multidrug resistant, and two strains were resistant to seven antimicrobial agents. The minimum inhibitory concentration (MIC) of the 67 V. parahaemolyticus isolates to ampicillin and oxacillin ranged from 512-2,048 and $64-512{\mu}g/mL$, respectively. All 67 isolates were also examined for the presence of the tdh and trh virulence genes using the polymerase chain reaction (PCR). However, no isolates possessed either tdh or trh. The VPA0477 (${\beta}$-lactamase) gene, present in all of the tested strains, was validated as a new specific marker gene in PCR assays for the accurate detection and identification of V. parahaemolyticus.

Effects of Wearing COVID-19 Protective Face Masks on Respiratory, Cardiovascular Responses and Wear Comfort During Rest and Exercise (휴식과 운동 중 COVID-19 대응 보건용 마스크 착용이 호흡·심혈관계 반응 및 착용감에 미치는 영향)

  • Jung, Jae-Yeon;Kang, ChanHyeok;Seong, Yuchan;Jang, Se-Hyeok;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.22 no.6
    • /
    • pp.862-872
    • /
    • 2020
  • This study explores the effects of facemasks on respiratory, thermoregulatory, cardiovascular responses during exercise on a treadmill and at rest. Five male subjects (25.8 ± 0.8 y, 171.8 ± 9.2 cm in height, 79.8 ± 28.1 kg in weight) participated in the following five experimental conditions: no mask, KF80, KF94, KF99, and N95. Inhalation resistance was ranked as KF80 < KF94 < N95 < KF99 and dead space inside a mask was ranked as KF80 = KF94 < N95 < KF99. The surface area covered by a mask was on average 1.1% of the total body surface area. The results showed no significant differences in body core temperature, oxygen consumption (VO2), carbon dioxide production (VCO2), heart rate or subjective perception among the five experimental conditions; however, cheek temperature, respiratory ventilation and blood pressure were greater for KF80 or KF94 conditions when compared to KF99 or N95 conditions (p<0.05). The differences among mask conditions are attributed to the dead space or specific designs (cup type vs pleats type) rather than the filtration level. In addition, the results suggest that improving mask design can help mitigate respiratory resistance from increased filtration.

Development of Composite Bipolar Plate for Vanadium Redox Flow Battery (바나듐 레독스 흐름 전지용 복합재료 분리판 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.148-154
    • /
    • 2021
  • Carbon/epoxy composite bipolar plate (BP) is a BP that is likely to replace existing graphite bipolar plate of vanadium redox flow cell (VRFB) due to its high mechanical properties and productivity. Multi-functional carbon/epoxy composite BP requires graphite coating or additional surface treatment to reduce interfacial contact resistance (ICR). However, the expanded graphite coating has the disadvantage of having low durability under VRFB operating conditions, and the surface treatments incur additional costs. In this work, an excessive resin absorption method is developed, which uniformly removes the resin rich area on the surface of the BP to expose carbon fibers by applying polyester fabric. This method not only reduces ICR by exposing carbon fibers to BP surfaces, but also forms a unique ditch pattern that can effectively hold carbon felt electrodes in place. The acidic environmental durability, mechanical properties, and gas permeability of the developed carbon/epoxy composite BP are experimentally verified.

Study of Au-PTFE/Al Metallic bipolar plate for PEMFC (고분자 전해질형 연료전지용 Au-PTFE/Al 금속분리판 연구)

  • Yoo, Seung-Eul;Kim, Myong-Hwan;Goo, Young-Mo
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.75-82
    • /
    • 2007
  • Aluminum was used as metallic bipolar plate material to reduce a stack weight. The functional materials such as conductive material, Au and nonconductive material, PTFE [polytetrafluoroethylene] were coated on the bipolar plate to enhance electrical contact and corrosion prevention in PEMFC. The active area of bipolar plate is divided into the top layer part that electric current mainly passes, and the bottom layer part that gas and water pass. The bottom layer part in the flow channel needs not to have electrical conductivity because it doesn't pass electric current directly. In this reason, Au on the top layer and PTFE on the bottom layer were coated to apply high electrical conductivity and/or good corrosion resistance. Although the single cell performance using Au-PTFE/Al bipolar plate was shown 78% in comparison with that of graphite, specific power of Au-PTFE/Al bipolar plate(0.4 W/g) was twice as much as graphite bipolar plate.

  • PDF

Effects by Changing Binder Contents in The Carbon Counter Electrode for Dye-sensitized Solar Cells (염료감응형 태양전지의 탄소대항전극 제조시 바인더에 따른 영향)

  • Kim, Seong-Jun;Kwon, Jung-Youl;Lee, Hyeon-Seok;Park, Jung-Cheul;Lee, Heon-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.114-115
    • /
    • 2006
  • In the present study we investigated effects by changing binder contents m the carbon counter electrode for dye-sensitized solar cells. Binder contents changed for 6 wt%, 7 wt%, 8 wt% before making carbon electrode. In the result of the measurement the specific resistance for 6 wt% was lowest among others And the surface of the carbon electrode which was measured by SEM was best m the 6 wt"%. The electrode properties be showing in an experiment were due to increment of surface roughness that appeared the carbon electrode, which decreased internal surface area.

  • PDF

Performance Behavior by H2 and CO as a Fuel in Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC) (중.저온형 고체산화물 연료전지에서 연료로 공급되는 CO 와 H2 가 성능에 미치는 영향)

  • Park, Kwang-Jin;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.963-969
    • /
    • 2008
  • The performance behavior of solid oxide fuel cell using $H_2$ and CO as fuels was investigated. The power densities and impedance results showed a little variation as the ratio of $H_2$ and CO changed. However, when the pure CO was used as a fuel, area specific resistance (ASR), especially low frequency region, was increased. This might be due to carbon deposition on anode. The maximum power density was 60% lower using CO than using $H_2$. Carbon deposition reduced after constant current was applied. The SOFC performance was recovered from the carbon deposition after applying constant current during 100h.