• Title/Summary/Keyword: Area of evacuation

Search Result 230, Processing Time 0.02 seconds

Development of Urban Flood Analysis Model Adopting the Unstructured Computational Grid (비정형격자기반 도시침수해석모형 개발)

  • Lee, Chang Hee;Han, Kun Yeun;Kim, Ji Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.511-517
    • /
    • 2006
  • Flood damage is one of the most important and influential natural disaster which has an effect on human beings. Local concentrated heavy rainfall in urban area yields flood damage increase due to insufficient capacity of drainage system. When the excessive flood occurs in urban area, it yields huge property losses of public facilities involving roadway inundation to paralyze industrial and transportation system of the city. To prevent such flood damages in urban area, it is necessary to develop adequate inundation analysis model which can consider complicated geometry of urban area and artificial drainage system simultaneously. In this study, an urban flood analysis model adopting the unstructured computational grid was developed to simulate the urban flood characteristics such as inundation area, depth and integrated with subsurface drainage network systems. By the result, we can make use of these presented method to find a flood hazard area and to make a flodd evacuation map. The model can also establish flood-mitigation measures as a part of the decision support system for flood control authority.

Generation of Tsunami Hazard Map (지진해일 재해정보도 제작)

  • Ahn, Seong-Ho;Ha, Tae-Min;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.127-133
    • /
    • 2010
  • In the ocean area surrounding the Korean Peninsula, the undersea earthquakes have occurred frequently during last decades. The eastern coast of the Korean Peninsula is very vulnerable to tsunami attacks which occur along the Western Coast of Japan. In special, the middle areas of the eastern coast of Korean Peninsula have been damaged due to the Central East Sea Tsunami occurred in 1983. Thus, tsunami hazard mitigation becomes an important issue at eastern coastal communities. The countermeasures against unexpected tsunami attacks are not sufficient because the government policy generally focused on not preventing but recovering. In this paper, a hazard map based on the field survey and tsunami evacuation simulation is developed to mitigate tsunami damage at Imwon port, which was severely damaged during the 1983 Central East Sea Tsunami.

Non-Fire Alarm Management and Customized Automatic Guidance System (비화재보 관리 및 맞춤형 자동안내 시스템)

  • Hyo-Seung Lee;Ju-Sang Lee;Woo-Jun Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.355-360
    • /
    • 2023
  • Fire is a disaster that causes irreversible damage to many people due to personal injury and property damage. Various fire detection equipments are installed around us to detect and cope with it quickly. However, due to various problems such as artificial, environmental, and aging, fire detection equipment is activated even though it is not a actual fire, and there are many problems such as delaying the support to the necessary fire scene. In this paper, we analyze the non-fire alarm of the fire detection equipment and propose a system that enables the field staff to check the scene situation through the video as a way to prevent the mobilization due to the misinformation by checking the fire. The purpose of the present invention is to stably cope with a disaster by suggesting a customized automatic guidance system which induces a rapid evacuation by sending an evacuation guidance notification to a range of a fire occurrence neighboring area, and supports a rapid and accurate processing by a rapid dispatch of a firefighter, rather than a wide range of guidance such as an existing emergency disaster guidance letter when it is determined to be an actual fire through the confirmation procedure.

Developing and Utilizing Transportation Disaster Prevention System Considering Regional Characteristics (지역 특성을 고려한 교통방재시스템 구축 및 활용에 관한 연구)

  • Son, Young-Tae
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.217-231
    • /
    • 2009
  • In order to manage traffic operations efficiently, it is required to establish evacuation strategies, including path, disaster prevention, and signal control. This is because the delayed response of operators would cause dreadful loss of our community. Therefore, it is very important to do the research related to traffic disaster prevention system. In this paper, we select the City of Cheongju as a study area since lots of damage resulting from natural disaster such as storm and flood have been frequently taken place. In addition, this paper suggest traffic disaster prevention measures and analyzed its effect on signal operation to achieve high level of traffic efficiency. As a result, traffic flow is similar to normal condition when we applied developed signal operation method. It is also demonstrated if disaster information is spread out as fast as it can be, and signal operation is managed properly in case by case, we conclude that user safety has to be secured.

  • PDF

Methodology of Fire Safety IFC Schema Extension through Architectural WBS Hierarchy Analysis (건축 WBS 위계 분석을 통한 소방 IFC 스키마 확장 방법론에 관한 연구)

  • Kim, Tae-Hoon;Won, Jung-Hye;Hong, Soon-Min;Choo, Seung-Yeon
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.70-79
    • /
    • 2022
  • As BIM(Building Information Modeling) technology advances in architecture around the world, projects and industries using BIM are increasing. Unlike previous developments that were limited to buildings, BIM is now spreading to other fields such as civil engineering and electricity. In architecture, BIM is used in the entire process from design to maintenance of a building, and IFC(Industry Foundation Classes), a neutral format with interoperability, is used as an open BIM format. Since firefighting requires intuitive 3D models for evacuation and fire simulations, BIM models are desirable. However, due to the BIM model, which was developed centered on building objects, there are no objects and specific properties for fire evacuation in the IFC scheme. Therefore, in this study, when adding a new object in the firefighting area to the IFC schema, the IFC interoperability is not broken and the building WBS(Work Breakdown Structure) is analyzed with a hierarchical system similar to the IFC format to define the scope for a new object and the firefighting part within of the building WBS to derive a firefighting HBS(Hierarchy Breakdown Structure) with the extension of the object-oriented IFC file. And according to HBS, we propose an IFC schema extension method. It is a methodology that allows BIM users to instantly adapt the IFC schema to their needs. Accordingly, the methodology derived from this study is expected to be expanded in various areas to minimize information loss from IFC. In the future, we will apply the IFC extension methodology to the actual development process using HBS to verify that it is actually applicable within the IFC schema.

Development of a Flood Disaster Evacuation Map Using Two-dimensional Flood Analysis and BIM Technology (2차원 침수해석과 BIM 기술을 활용한 홍수재난 대피지도 작성)

  • Jeong, Changsam
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.2
    • /
    • pp.53-63
    • /
    • 2020
  • In this study, the two-dimensional flow analysis model Hydro_AS-2D model was used to simulate the situation of flooding in Seongsangu and Uichang-gu in Changwon in the event of rising sea levels and extreme flooding, and the results were expressed on three-dimensional topography and the optimal evacuation path was derived using BIM technology. Climate change significantly affects two factors in terms of flood damage: rising sea levels and increasing extreme rainfall ideas. The rise in sea level itself can not only have the effect of flooding coastal areas and causing flooding, but it also raises the base flood level of the stream, causing the rise of the flood level throughout the stream. In this study, the rise of sea level by climate change, the rise of sea level by storm tidal wave by typhoon, and the extreme rainfall by typhoon were set as simulated conditions. The three-dimensional spatial information of the entire basin was constructed using the information of topographical space in Changwon and the information of the river crossing in the basic plan for river refurbishment. Using BIM technology, the target area was constructed as a three-dimensional urban information model that had information such as the building's height and location of the shelter on top of the three-dimensional topographical information, and the results of the numerical model were expressed on this model and used for analysis for evacuation planning. In the event of flooding, the escape route is determined by an algorithm that sets the path to the shelter according to changes in the inundation range over time, and the set path is expressed on intuitive three-dimensional spatial information and provided to the user.

Evaluation of the Size of Emergency Planning Zone for the Korean Standard Nuclear Power Plants (한국표준형 원전에 대한 방사선비상계획구역 범위 평가)

  • Jeon, In-Young;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.215-223
    • /
    • 2003
  • Against major release of radioactive material in nuclear power plant, Emergency Planning Zone(EPZ)s are typically established around nuclear power plants to effectively perform the public protective measures. The domestic methodology to determine the size of the EPZ is similar to that of Japan established in 1980, where calculations were based on the conservative accident source term. The objective of this study is to re-evaluate the validity of established EPZ, the area within the radius of $8{\sim}10km$ around domestic nuclear power plants, using the source terms covering full spectrum of accidents obtained from PSA study of ULJIN 3&4. To evaluate the risks of health effects, the computer code MACCS2(MELCOR Accident Consequence Code System2) was used. The result shows that the existing EPZ can reduce the probability of early fatality adequately for most of the source term categories(STCs) except for STC-14 and STC-19. In case of STC-14 and 19, the evacuation distance of 16km and 13km, respectively, are required. These distances can be reduced by improving emergency preparedness since the sensitivity studies for the public protective actions show that the magnitude of early fatality is largely affected by the time delays in notification and evacuation.

Comparative Study on Predictions of Passengers' Evacuation Performances Before and After the Remodelling of MV SEWOL (세월호 증개축 전후 승선객의 피난성능 예측비교)

  • Hwang, Kwang Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.105-114
    • /
    • 2015
  • Even though the passengers' safety has priority on Passenger ship, there is no criterion on the evacuation performance related with human behavior. To uncover the potential problems of domestic criteria on safety of passenger ships, this study performed simulation ad analysis the evacuees safety before and after the Sewol's remodelling. It is clear that the assembly stations of both before and after Sewol remodelling have sufficient areas to satisfy the domestic criterion by simply human- body's-area, but those are failed to assemble all the passengers by the simulation tool that reflects the human behaviors' characteristics. For the healing angle as 0 degree, and the criteria of SOLAS, it was found out that all the passengers can safely evacuate from each cabins to the embarkation stations for both of the before-and-after the Sewol remodelling. But for the healing angle as 20 degree, both of the before-and-after Sewol remodelling are evaluated as possible to make all the passengers evacuate for day scenario and impossible for night scenario of SOLAS criteria. And because of the worse conditions after the remodelling, the probabilities of Sewol(before) are showed wide band comparing to Naminoue (after).

Smart Escape Support System for Passenger Ship : Active Dynamic Signage & Real-time Escape Routing (능동형 피난유도기기와 실시간 피난경로생성 기술을 적용한 여객선 스마트 인명대피 시스템)

  • Choi, James;Yang, Chan-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.79-85
    • /
    • 2017
  • It is critical that passengers should be given timely and correct escape or evacuation guidance from captain and crews when there are hazardous situations in a ship. Otherwise the consequences could be disastrous as "SEWOL Ferry" the South Korean passenger ship which sank in southern coastal area on 16th April 2014. Due to the captain's delayed evacuation decision and lack of sufficient number of crews to guide passengers' evacuation, the accident recorded many casualties, most of whom were high school students (302 passengers sank down with the ship while 172 rescued). Building a passenger ship with well-designed physical escape routes is one thing and guiding passengers to those escape routes in real disaster situation is another. Passengers get panic and move to a wrong direction, bottleneck makes situation worse, and even crews get panic also - passive static escape route signage and small number of trained crews might not be enough to take care of them. SESS (Smart Escape Support System) is being developed sponsored by South Korea Ministry of Ocean and Fisheries starting from 2016 with 4 years of roadmap. SESS comprises multiple active dynamic signage devices which communicate with real-time escape routing server software via LoRa (Long Range) proprietary wireless network.

  • PDF

Time-Dependent Optimal Routing in Indoor Space (실내공간에서의 시간 가변적 최적경로 탐색)

  • Park, In-Hye;Lee, Ji-Yeong
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.361-370
    • /
    • 2009
  • As the increasing interests of spatial information for different application area such as disaster management, there are many researches and development of indoor spatial data models and real-time evacuation management systems. The application requires to determine and optical paths in emergency situation, to support evacuees and rescuers. The optimal path in this study is defined to guide rescuers, So, the path is from entrance to the disaster site (room), not from rooms to entrances in the building. In this study, we propose a time-dependent optimal routing algorithm to develop real-time evacuation systems. The network data that represents navigable spaces in building is used for routing the optimal path. Associated information about environment (for example, number of evacuees or rescuers, capacity of hallways and rooms, type of rooms and so on) is assigned to nodes and edges in the network. The time-dependent optimal path is defined after concerning environmental information on the positions of evacuees (for avoiding places jammed with evacuees) and rescuer at each time slot. To detect the positions of human beings in a building per time period, we use the results of evacuation simulation system to identify the movement patterns of human beings in the emergency situation. We use the simulation data of five or ten seconds time interval, to determine the optimal route for rescuers.

  • PDF