• Title/Summary/Keyword: Area average rainfall

Search Result 280, Processing Time 0.033 seconds

Development of Nonpoint Sources Runoff Load Estimation Model Equations for the Vineyard Area (포도밭에 대한 비점오염물질 유출량 추정 모델식 개발)

  • Yoon, Young-Sam;Kwon, Hun-Gak;Yi, Youn-Jung;Yu, Jay-Jung;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.19 no.7
    • /
    • pp.907-915
    • /
    • 2010
  • Agriculture nonpoint pollution source is a significant contributor to water quality degradation. To establish effective water quality control policy, environpolitics establishment person must be able to estimate nonpoint source loads to lakes and streams. To meet this need for orchard area, we investigated a real rainfall runoff phenomena about it. We developed nonpoint source runoff estimation models for vineyard area that has lots of fertilizer, compost specially between agricultural areas. Data used in nonpoint source estimation model gained from real measuring runoff loads and it surveyed for two years(2008-2009 year) about vineyard. Nonpoint source runoff loads estimation models were composed of using independent variables(rainfall, storm duration time(SDT), antecedent dry weather period(ADWP), total runoff depth(TRD), average storm intensity(ASI), average runoff intensity(ARI)). Rainfall, total runoff depth and average runoff intensity among six independent variables were specially high related to nonpoint source runoff loads such as BOD, COD, TN, TP, TOC and SS. The best regression model to predict nonpoint source runoff load was Model 6 and regression factor of all water quality items except for was $R^2=0.85$.

Correlation Analysis of Basin Characteristics and Limit Rainfall for Inundation Forecasting in Urban Area (도시지역 침수예측을 위한 유역특성과 한계강우량에 대한 상관분석)

  • Kang, Ho Seon;Cho, Jae Woong;Lee, Han Seung;Hwang, Jeong Geun;Moon, Hae Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.97-97
    • /
    • 2020
  • Flooding in urban areas is caused by heavy rains for a short period of time and drains within 1 to 2 hours. It is also characterized by a small flooding area. In addition, flooding is often caused by various and complex causes such as land use, basin slope, pipe, street inlet, drainage pumping station, making it difficult to predict flooding. Therefore, this study analyzes the effect of each basin characteristic on the occurrence of flooding in urban areas by correlating various basin characteristics, whether or not flooding occurred, and rainfall(Limit Rainfall), and intends to use the data for urban flood prediction. As a result of analyzing the relationship between the imperviousness and the urban slope, pipe, threshold rainfall and limit rainfall, the pipe showed a correlation coefficient of 0.32, and the remaining factors showed low correlation. However, the multiple correlation analysis showed the correlation coefficient about 0.81 - 0.96 depending on the combination, indicating that the correlation was relatively high. In the future, I will further analyze various urban characteristics data, such as area by land use, average watershed elevation, river and coastal proximity, and further analyze the relationship between flooding occurrence and urban characteristics. The relationship between the urban characteristics, the occurrence of flooding and the limiting rainfall amount suggested in this study is expected to be used as basic data for the study to predict urban flooding in the future.

  • PDF

Estimation of the Spatial Distribution of Groundwater Recharge by Grid-based Soil Water Balance Method (격자기반의 토양물수지방법에 의한 지하수함양의 공간분포 추정)

  • An Jung-Gi;Lee Yong-Doo;Hwang Jong-Hwan
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.65-76
    • /
    • 2006
  • This paper outlines the methodology of grid-based water balance for estimating the spatial distribution of recharge, which is applied to Woedo catchment in the northern area of the Jeju Island. The catchment is divided into grids and a daily water balance in each grid is computed for the period of 5 years. Daily rainfall data in each grid is interpolated from the data of 10 rainfall gauging stations. The spatial distributions of parameters such as SCS curve number, soil water retention capacity and crop coefficients are derived from GIS analyses of soil and land use characteristics. The SCS curve number is obtained by calibrating simulated runoffs with respect to the observed runoffs. The results show that the average annual rainfall increases from 1,665 mm/year to 3,382 mm/year in accordance with the topographic elevation, and the average annual recharge varies from 372 mm/year to 2,576 mm/year according to the average annual rainfall increases. Spatial variability of recharge is the highest among the water balance components such as rainfall, direct runoff, evaprotranspiration and recharge because the rate of runoff and evapotranspiration in the area with relatively low rainfall is higher than the other area.

Sampling Error of Areal Average Rainfall due to Radar Partial Coverage (부분적 레이더 정보에 따른 면적평균강우의 관측오차)

  • Yoo, Chul-Sang;Ha, Eun-Ho;Kim, Byoung-Soo;Kim, Kyoung-Jun;Choi, Jeong-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.5
    • /
    • pp.545-558
    • /
    • 2008
  • This study estimated the error involved in the areal average rainfall derived from incomplete radar information due to radar partial coverage of a basin or sub-basin. This study considers the Han-River Basin as an application example for the rainfall observation using the Ganghwa rain radar. Among the total of 20 mid-sized sub-basins of the Han-River Basin evaluated in this study, only five sub-basins are fully covered by the radar and three are totally uncovered. Remaining 12 sub-basins are partially covered by the radar to result in incomplete radar information available. When only partial radar information is available, the sampling error decreases proportional to the size of the radar coverage, which also varies depending on the number of clusters. Conditioned that the total area coverage remains the same, the sampling error decreases as the number of clusters increases. This study estimated the sampling error of the areal average rainfall of partially-covered mid-sized sub-basins of the Han- River Basin, and the results show that the sampling error could be at least several % to maximum tens % depending on the relative coverage area.

Comparison and Analysis of Observation Data of Rainfall Sensor for Vehicle and Rainfall Station (차량용 강우센서와 강우관측소 관측자료 비교분석)

  • Lee, Chung Dae;Lee, Byung Hyun;Cho, Hyeong Je;Kim, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.783-791
    • /
    • 2018
  • The biased estimation of low density rainfall network and radar rainfall has limited application to extreme rainfall in a small area. To improve this, more rainfall information needs to be produced. In this study, we analyzed the applicability of the vehicle rainfall sensor developed and used recently. The developed rainfall sensor was attached to the vehicle to observe the rainfall according to the movement of the vehicle. The analytical method used time series and average rainfall values for observations of rainfall sensors and nearby rainfall stations. The results show that the trend of observed values according to rainfall events shows a certain pattern. It is analyzed that it is caused by various causes such as the difference between the observation position of the rainfall sensor and the nearby rainfall station, the moving speed of the vehicle, and the rainfall observation method. This result shows the possibility of rainfall observation using a rainfall sensor for a vehicle, and it is possible to observe rainfall more precisely through experiments and improvement of rainfall sensors in various conditions in the future.

Characteristics Analyses of Timely Rainfall Events Above Probability Precipitation on Each Frequency (빈도별 확률강우량을 초과하는 시간강우사상의 특성 분석)

  • Oh, Tae Suk;Kim, Eun Cheol;Moon, Young-Il;Ahn, Jae Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.513-526
    • /
    • 2009
  • The flood control countermeasure establish for reducing of the flood damages. Design frequency usually reflects the current situation of the station, the importance and the design rainfall. Therefore, this study calculated frequency for duration maximum rainfall with the area which happened the flood damages by main heavy rainfall events recently. Also, to analyze for the temporal characteristics of rainfall event exceed by design rainfall, excess rainfall and excess frequency and excess rainfall per event calculated. To grasp the temporal variation, About excess rainfall and excess frequency and excess rainfall per event have analyzed by change and trend test. Also, rainfall observatory did grouping by cluster analysis using position of rainfall observatory and characteristic timely rainfall. For the grouping rainfall observatory by the cluster analysis calculated average of excess rainfall and excess frequency and excess rainfall per event. To compare for the temporal characteristics, the change and trend test had analyzed about excess rainfall, excess frequency by regional groups.

A Generalized Model on the Estimation of the Long - term Run - off Volume - with Special Reference to small and Medium Sized Catchment Areas- (장기만연속수수량추정모형의 실용화 연구 -우리나라 중소유역을 대상으로-)

  • 임병현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.4
    • /
    • pp.27-43
    • /
    • 1990
  • This study aimed at developing a generalized model on the estimation of the long - term run - off volume for practical purpose. During the research period of last 3 years( 1986-1988), 3 types of estimation model on the long - term run - off volume(Effective rainfall model, unit hydrograph model and barne's model for dry season) had been developed by the author. In this study, through regressional analysis between determinant factors (bi of effective rainfall model, ai of unit hydrograph model and Wi of barne's model) and catchment characteris- tics(catchment area, distance round the catchment area, massing degree coefficient, river - exte- nsion, river - slope, river - density, infiltration of Watershed) of 11 test case areas by multiple regressional method, a new methodology on the derivation of determinant factors from catchment characteristics in the watershed areas having no hydrological station was developed. Therefore, in the resulting step, estimation equations on run - off volume for practical purpose of which input facor is only rainfall were developed. In the next stage, the derived equations were applied on the Kang - and Namgye - river catchment areas for checking of their goodness. The test results were as follows ; 1. In Kang - river area, average relative estimation errors of 72 hydrographs and of continuous daily run - off volume for 245 days( 1/5/1982 - 31/12) were calculated as 6.09%, 9.58% respectively. 2. In Namgye - river area, average relative estimation errors of 65 hydrographs and of conti- nuous daily run - off volume for 2fl days(5/4/1980-31/12) were 5.68%, 10.5% respectively. In both cases, relative estimation error was averaged as 7.96%, and so, the methodology in this study might be hetter organized than Kaziyama's formula when comparing with the relative error of the latter, 24~54%. However, two case studies cannot be the base materials enough for the full generalization of the model. So, in the future studies, many test case studies of this model should he carries out in the various catchment areas for making its generalization.

  • PDF

A Case Study on Development of Stormwater Retention and Infiltration Pond System (우수저류 및 침투연못 시스템개발 사례연구 - 우수 저류 및 침투 효과를 중심으로 -)

  • Lee, Jae Chul;Yoon, Yeo Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.4
    • /
    • pp.52-61
    • /
    • 2003
  • This study was carried out to analyze the effects of stormwater retention and infiltration pond on reduction of flood peak and volume in a experimentally developed ecological pond. The experimental site has 542$m^2$ watershed area, 1,310mm yearly-averaged rainfall. And the area of the retention pond is 60$m^2$, the maximum water depth is 0.5m, the maximum and average storage is 15$m^3$and 9.3$m^3$d. And the area of infiltration pond is 58$m^2$, and the water depth varies 0.2m~0.5m. The monitoring system consists of one rainfall gage, one Parshall flume and acoustic water level gage, two rectangular weirs and acoustic water level gage for discharge gaging, and one data recording unit. Data from ten storm events in total, three storm events in year 2000 and seven storm events in year 2001, were collected. From the data the evaporation rate was achieved with the water balance equation, and the result shows 5.0mm/day in average. The result from the analysis of the effects on reduction of flood peak and volume, is that 14% reduction of flood volume and 15% reduction of flood peak in retention pond and 49% reduction of flood volume in infiltration pond.

Application of the Surface Cover Materials for Reduction of NPS Pollution from Actual Cultivation (실경작지 밭의 비점오염물질 저감을 위한 지표피복재 적용)

  • Shin, Min Hwan;Jang, Jeong Ryeol;Jung, Young Hun;Kum, Dong Hyuk;Won, Chul Hee;Lee, Su In;Lim, Kyoung Jae;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.31-38
    • /
    • 2014
  • Four actual cultivations were prepared and a variety of soybean was cultivated. A H-flume, an automatic water level gauge and an automatic water sampler were installed at the outlet of each plot equipped for the measurement of flow rate and its water quality. The amount of rainfall of the study area in 2013 was measured as 975.6 mm which was much lower than the annual average rainfall of 1,271.8 mm, resulting in less occurrences in rainfall-runoff events. Rainfall-runoff events were occurred three times during the rainfall event of 4~5 July, 23 and 24 August. The characteristics of NPS pollution discharge of the plots and the reduction effect of the selected BMPs were analyzed during these events. The reduction effect of straw mat and soil amendments (Polyacrylamide (PAM) and Gypsum) on runoff ratio ranged between 38.2 and 92.9% (average 71.6%). The NPS pollution load reduced between 27.7 and 95.1% (average 70.0%) by the application of rice straw mat and soil conditioner when compared with that of control plot. Soybean yield (2,133.3 kg/ha) of the straw mat covered plots increased by 14.3% when compared with control (1,866.7 kg/ha). The effect of straw mat on the yield was not economically viable if the material and accompanying labor costs were considered. The data collected and analyzed on different soil textures and crops in this study are expected to be a fundamental reference for the expansion of the results to the application nationwide and the development of NPS pollution management policies.

Development and Application of Automatic Rainfall Field Tracking Methods for Depth-Area-Duration Analysis (DAD 분석을 위한 자동 강우장 탐색기법의 개발 및 적용)

  • Kim, Yeon Su;Song, Mi Yeon;Lee, Gi Ha;Jung, Kwan Sue
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.4
    • /
    • pp.357-370
    • /
    • 2014
  • This study aims to develop a rainfall field tracking method for depth-area-duration (DAD) analysis and assess whether the proposed tracking methods are able to properly estimate the maximum average areal rainfall (MAAR) within the study area during a rainfall period. We proposed three different rainfall field tracking algorithms (Box-tracking, Point-tracking, Advanced point-tracking) and then applied them to the virtual rainfall field with 1hr duration and also compared DAD curves of each method. In addition, we applied the three tracking methods and a traditional GIS-based tool to the typhoon 'Nari' rainfall event of the Yongdam-Dam watershed and then assess applicability of the proposed methods for DAD analysis. The results showed that Box-tracking was much faster than the other two tracking methods in terms of searching for the MAAR but it was impossible to describe rainfall spatial pattern during its tracking processes. On the other hand, both Point-tracking and Advanced point-tracking provided the MAAR by considering the spatial distribution of rainfall fields. In particular, Advanced point-tracking estimated the MAAR more accurately than Point-tracking in the virtual rainfall field, which has two rainfall centers with similar depths. The proposed automatic rainfall field tracking methods can be used as effective tools to analyze DAD relationship and also calculate areal reduction factor.