본 연구에서는, 천연가스(NG) 데이터와 가스 관련 환경 요소 간의 관계를 기계학습 알고리즘을 사용하여 가스 누출 데이터를 직접 측정하지 않고 가스 누출 위험 수준을 예측하였다. 이번 연구는 서버가 제공하는 오픈 데이터인 IoT 기반 원격 제어 피카로(Picarro) 가스 센서 사양을 기반으로 사용했다. 천연 가스는 공기 중으로 누출이 되며, 대기 오염, 환경, 그리고 건강에 큰 문제가 된다. 본 연구에서 제안하는 방법은 천연 가스의 누출 위험 예측을 위한 랜덤 포레스트(Random Forest) 분류 기반 다변량 특이치 제거 방법이다. 비지도 k-평균 클러스터링 후에 실험 데이터 집합은 불균형 데이터이다. 따라서 우리는 제안된 모델이 중간과 높은 위험 수준을 가장 잘 예측할 수 있다는 점에 초점을 맞춘다. 이 경우 각 분류 모델에 대한 수신자 조작 특성(ROC) 곡선, 정확도, 평균 표준 오차(MSE)를 비교했다. 실험 결과로 정확도, 수신자 조작 특성의 곡선 아래 영역(AUC, Area Under the ROC Curve), MSE가 각각 MOL_RF의 경우 99.71%, 99.57%, 및 0.0016의 결과 값을 얻었다.
Communications for Statistical Applications and Methods
/
제22권3호
/
pp.223-232
/
2015
The area under the ROC curve (AUC), the volume under the ROC surface (VUS) and the hypervolume under the ROC manifold (HUM) are defined and interpreted with probability that measures the discriminant power of classification models. AUC, VUS and HUM are expressed with the summation and integration notations for discrete and continuous random variables, respectively. AUC for discrete two random samples is represented as the nonparametric Mann-Whitney statistic. In this work, we define conditional Mann-Whitney statistics to compare more than two discrete random samples as well as propose that VUS and HUM are represented as functions of the conditional Mann-Whitney statistics. Three and four discrete random samples with some tie values are generated. Values of VUS and HUM are obtained using the proposed statistic. The values of VUS and HUM are identical with those obtained by definition; therefore, both VUS and HUM could be represented with conditional Mann-Whitney statistics proposed in this paper.
The pharmacokinetics of orally administered paclitlxel (50 mg/kg) was studied in six rabbits after 1hr pretreatment (2.0 mg/kg and 10 mg/kg) of tetramethoxyflavone or coadministration of (2.0 mg/kg, 10 mg/kg and 20 mg/kg) tetramethoxyflavone. The area under the plasma concentration-tine curve (AUC) and plasma concentration of paclitaxe1 coadministered with tetramethoxyflavone (10 mglkg) were increased significantly (p<0.05) compared with control. However, coadministration of tetramethoxyflavone (2 and 20 mg/kg) showed no significant effect on the pharmacokinetic parameters of paclitaxel. Pretreatment with tetramethoxyflavone significantly (p<0.05) increased the plasma concentration of paclitaxel. The area under the plasma concentration-time curve (AUC) and the peak concentration (C$_{max}$) of paclitaxel pretreated with tetramethoxyflavone were increased significantly (p<0.01, p<0.05) compared with control. The terminal half. life of paclitaxel pretreated with tetramethoxyflavone (2 mg/kg and 10 mg/kg) was significantly (p<0.05) prolonged compared with control. Pretreatment with tetramethoxyflavone (2.0 mg/kg, 10 mg/kg) significantly (p<0.01, p<0.05) increased the absolute bioavailability of paclitaxel compared with the control (154∼179%). On the basis of the results, it might be considered that tetramethoxyflavone may inhibit cytochrome P450 or P-glycoprotein efflux pump which are engaged in paclitaxel metabolism, result in increased AUC and t$_{1}$2/ of paclitaxel. However, further study should be conducted to clarify the roles of cytochrome P450 and P-glycoprotein on paclitaxel bioavailability with/or without tetramethoxyflavone. P-glycoprotein on paclitaxel bioavailability with/or without tetramethoxyflavone.
화장품의 사용감을 관계 있는 물성의 측정을 통해 정량화하려는 시도가 이어져오고 있다. 그 중 끈적임은 texture ananlyzer를 이용하여 수직 힘을 측정하는 방식이 대표적이며, 시간에 따른 수직 힘의 그래프에서 음의 면적인 area under curve (AUC)와 상관관계를 갖는 것으로 알려져 있다. 최근 노르망디 대학에서는 이러한 특성에 피부의 특성을 함께 고려하여 TA를 이용한 in vivo 끈적임 평가법을 개발하였다[8]. 본 연구에서는 이를 확장하여 화장품 크림의 in vivo 끈적임 평가법을 최적화하고자 하였다. 페이셜 크림 5 종을 대상으로 크림의 도포량 및 도포 횟수, 탐침의 모양과 소재를 바꾸어 보면서 실험을 진행하였고, 관능 평가 결과를 기준으로 가장 부합하는 조건을 최적의 평가법으로 설정하였다. 그 결과, 3.4 cm의 원 내부에 70 μL의 크림을 7 s 동안 10 회 문지르고 측정하는 방식이 가장 적합한 것으로 판단되었다. 탐침의 경우, 원기둥형보다 구형의 탐침이 재현성이 높게 나타나 구형의 금속 탐침을 택하였다. 최적의 평가법을 확보하여 10 인의 피험자를 대상으로 인체 평가를 진행한 결과, 사람에 따른 절대값에는 차이가 있으나 AUC의 순위는 모두 같게 얻어졌다. 마지막으로 AUC의 끈적임 표준화의 시도로 PVP를 표준 물질로 설정하여 농도 별로 AUC를 측정하고, 5종의 크림 별 끈적임 인지율을 확인하여 AUC와 끈적임의 상관관계에 대해 알아보았다.
Communications for Statistical Applications and Methods
/
제31권2호
/
pp.203-212
/
2024
The area under the ROC curve (AUC) is one of the most common criteria used to measure the overall performance of binary classifiers for a wide range of machine learning problems. In this article, we propose a L1-penalized AUC-optimization classifier that directly maximizes the AUC for high-dimensional data. Toward this, we employ the AUC-consistent surrogate loss function and combine the L1-norm penalty which enables us to estimate coefficients and select informative variables simultaneously. In addition, we develop an efficient optimization algorithm by adopting k-means clustering and proximal gradient descent which enjoys computational advantages to obtain solutions for the proposed method. Numerical simulation studies demonstrate that the proposed method shows promising performance in terms of prediction accuracy, variable selectivity, and computational costs.
이 연구의 목적은 확률모델의 2가지 방법인 Frequency Ratio(FR), Evidential Belief Functions(EBF) 모델을 사용하여 산사태 취약성을 작성하고 강릉시 사천면과 주문진읍에서의 결과 비교를 통해 각 지역에 적합한 모델을 선정하는 것이다. 사천면에서 762개, 주문진읍에서 548개의 산사태 위치를 항공 사진의 해석을 기반으로 작성되었다. 각각의 산사태 지점 중 절반을 모델링을 위해 무작위로 선택하였고 남은 산사태 지점은 검증 목적으로 사용하였다. 지형 요소, 수문 요소, 산림입지토양도(1:5,000), 임상도(1:5,000), 지질도(1:25,000)와 같은 5가지 범주로 분류된 20가지의 산사태 유발 요소가 연구에서 산사태 취약성 작성을 위해 고려되었다. 산사태 발생과 산사태 유발 요소 사이의 관계는 FR, EBF 모델을 사용하여 분석되었다. 그 후, 2 가지 모델을 AUC(curve under area) 방법을 사용하여 검증하였다. 검증 결과에 따르면 주문진읍에서 FR모델(AUC = 81.2%)이 EBF 모델(AUC = 78.9%)에 비해 정확도가 높았다. 사천면 지역에서는 EBF 모델(AUC = 83.6%)이 FR모델(AUC = 81.6%)보다 정확도가 높게 나타났다. 검증 결과 FR 모델과 EBF 모델은 정확도 80% 내외로 높은 정확도를 가지고 있음을 나타낸다.
ROC 곡선 아래 면적과 ROC 곡면 아래 부피를 이용하여 분류모형의 판별력을 측정하는 통계량인 AUC와 VUS에 관한 많은 연구가 있다. ROC 곡선을 구성하는 FPR과 TPR 모두에 제한을 두는 양방향 부분 AUC는 부분 AUC보다 더 효과적이고 정확하게 제안되었다. ROC 곡면에서도 부분 VUS 뿐만 아니라 세 방향 부분 VUS 통계량이 개발되었다. 본 연구에서는 ROC 곡선의 FPR과 TPR 모두에 제한된 두 개의 절단함수를 이용하여 확률 개념과 적분 표현으로 대안적인 AUC를 제안한다. 또한 이 AUC는 양방향 부분 AUC와 관계가 있음을 알 수 있다. ROC 곡면에서의 세 방향 부분 VUS도 절단함수를 이용하는 VUS와 관련되어 있음을 발견하였다. 그리고 이러한 대안적인 AUC와 VUS는 맨-휘트니 통계량으로 표현되고 추정된다. 정규분포와 확률표본을 기반으로 이들의 모수적인 추정 방법과 비모수적인 추정 방법을 탐색한다.
The pharmacokinetics of sulfamethoxazole were investigated in rabbits with folate-induced renal failure. The blood level, area under the blood concentration curve (AUC) and biological half-life were increased significantly, and the urinary excretion was decreased significantly compared with those of normal rabbits. Correlation of serum creatinine concentration and AUC, biological half-life, and correlation of creatinine clearance and renal clearance have linear relationship respectively. From these results, dosage regimen of sulfamethoxazole is considered to be adjusted for effective and safe therapy in renal failure.
The phormacokinetics of acetaminophen were investigated in rabbits with folate-induced renal failure. The blood level, the area under the blood concentraction curve(AUC) and the biological half-life were increased significantly, and the urinary excretion was decreased significantly as compared with those of normal rabbits. Serum creatinine concentration and AUC, creatinine clearance and renal clearance have linear relationship respectively. Dosage regimen of acetaminophen was considered to be adjusted in renal failure.
목적 수술 전 초음파 검사에서 갑상선 종양의 재발을 예측할 수 있는 심층 학습 모델을 개발하고자 한다. 대상과 방법 수술 전 초음파에서 병리학적으로 확진된 갑상선 수술을 받은 229명의 환자(남성:여성 = 42:187, 평균 연령, 49.6세)의 대표적인 초음파 이미지를 포함시켰다. 각각 대표적인 횡축 또는 종축 초음파 이미지가 선택되었다. 신경 네트워크용 Python 2.7.6 및 Keras 2.1.5, convolutional neural network을 사용한 심층 학습이 사용되었다. 재발한 환자와 재발이 없는 환자의 임상 및 조직학적 특징을 비교하였다. 그룹 간의 심층 학습 모델의 receiver operating characteristic curve 곡선 아래의 영역은 재발 갑상선암을 예측하기 위한 심층 학습 모델의 예측에 사용되었다. 결과 전체 환자 229명 중 49명이 종양 재발(21.4%)을 보였다. 종양의 크기, 다원성은 재발이 없는 군과 재발 군에서 유의한 차이가 있었다(p < 0.05). 재발성 갑상선암 예측을 위한 심층 학습 모델의 전반적인 평균 area under the curve (이하 AUC) 값은 0.9 ± 0.06이었다. 평균 AUC는 macrocarcinoma에서 0.87 ± 0.03, microcarcinoma에서 0.79 ± 0.16이었다. 결론 갑상선암의 초음파 이미지를 이용한 심층 학습 모델로 갑상선암 재발의 예측 모델 구축의 가능성을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.