• Title/Summary/Keyword: Area Measurement

Search Result 3,982, Processing Time 0.029 seconds

Design for Enhanced Precision in 300 mm Wafer Full-Field TTV Measurement (300 mm 웨이퍼의 전영역 TTV 측정 정밀도 향상을 위한 모듈 설계)

  • An-Mok Jeong;Hak-Jun Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.88-93
    • /
    • 2023
  • As the demand for High Bandwidth Memory (HBM) increases and the handling capability of larger wafers expands, ensuring reliable Total Thickness Variation (TTV) measurement for stacked wafers becomes essential. This study presents the design of a measurement module capable of measuring TTV across the entire area of a 300mm wafer, along with estimating potential mechanical measurement errors. The module enables full-area measurement by utilizing a center chuck and lift pin for wafer support. Modal analysis verifies the structural stability of the module, confirming that both the driving and measuring parts were designed with stiffness exceeding 100 Hz. The mechanical measurement error of the designed module was estimated, resulting in a predicted measurement error of 1.34 nm when measuring the thickness of a bonding wafer with a thickness of 1,500 ㎛.

Analysis of Surface Profile using Gap Sensor (Gap 센서를 이용한 가공물의 표면특성 분석)

  • 송무건;유송민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.304-308
    • /
    • 2000
  • Surface roughness measurement system with capacitance type gap sensor. Tentative result from the calibration measurement showed the potential applicability of the sensor to the processed specimen. In order to test the sensitivity of the measurement system, several parameters including valley depth, width of the specimen have been changed. Effect of the charge area between sensor and specimen surface has been also analyzed.

  • PDF

Requirements in terms of measurement area for viewing angle optical characterization of liquid crystal displays

  • Leroux, Thierry;Bignon, Thibault;Boher, Pierre
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.602-605
    • /
    • 2005
  • In this paper, we present a model to calculate the influence of the measurement spot diameter MSD on the viewing angle measurements using a conoscopic instrument. This model is verified experimentally using an EZContrast instrument and the requirements for next generation of displays are presented. We show that last generation of EZContrast XL88W and L80W allowing measurement spot diameter up to 6mm can fulfill the requirements for all the FPD generations up to 80 inches diagonal.

  • PDF

A Study on Measurement of Electroencephalogram Using Micro-Computer (Micro-Computer를 이용한 뇌파측정에 관한 연구)

  • 김현욱;박명규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.6 no.8
    • /
    • pp.27-34
    • /
    • 1983
  • Bioelectrical measurement has long been an important area in medical researches and practices, and contributed valueable data to the field of human engineering. In particular, the measurement of EEG has been widely used for the study of brain function as well as for the diagnosis of various brain disorders. The present study tried to improve conventional measurements of EEG in that FFT algorithm with microcomputer machine language was applied to facilitate the computation of various aspects of the EEG.

  • PDF

Implementation of SAR Measurement System with Stationary Probes (Probe 고정형 SAR 측정 시스템의 구현)

  • Kim Jeong-Ho;Gimm Youn-Myoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.221-227
    • /
    • 2006
  • The SAR evaluation system with 9 stationary probes inserted into the object to be surveyed can calculate area SAR value based on the 9 measured electric field data. The results can be acquired in a few seconds by converting obtained area SAR to the volume SAR. The system can be very useful tool in the stages of handset development for mobile communication as well as in the handset production line because of its rapid SAR measurement ability. The validity of the measurement system is checked by showing that the measured SAR values agree well with reference SAR values suggested in the reference documents.

Measurement of Heat Flux in Rocket Combustors Using Plug-Type Heat Flux Gauges

  • Kim, Min Seok;Yu, I Sang;Kim, Wan Chan;Shin, Dong Hae;Ko, Young Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.788-796
    • /
    • 2017
  • This paper proposes a new measurement method to improve the shortcomings of an existing integral method for measuring heat flux in plug-type heat flux gauges in the high-temperature and high-pressure environments of liquid-rocket combustors. Using the existing integral measurement method, the calculation of the surface area for the heat flux in the gauge exhibits error in relation to the actual surface area. To solve this problem, transient profiles obtained from ANSYS Fluent were used to calculate unsteady heat flux as it adjusted to the measured temperature. First, a heat flux gauge was designed and manufactured specifically for use in the high-temperature and high-pressure conditions that are similar to those of liquid rocket combustors. A calibration test was performed to prove the reliability of the manufactured gauge. Then, a combustion experiment was conducted, in which the gauge was used to measure unsteady heat flux in a liquid rocket combustor that used kerosene and liquid oxygen as propellants. Reasonable heat flux values were obtained using the gauge. Therefore, the proposed measurement method is considered to offer significant improvement over the existing integral method.

The Characteristics of Blasting Vibration in the Construction of Apartment and Buildings in Urban Area (도심지 발파공사장의 발파진동 특성)

  • 이연수;장서일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.521-526
    • /
    • 2004
  • In order to evaluate the effect of blasting vibration in buildings and it's resident located around blasting construction field in urban area, blasting vibration characteristics were measured the vibration level, vibration velocity. The 250g and 750g of charged powder were used at the apartment and at the ground, respectively. In the measurement of the ground, Z(perpendicularity) axis was the highest value in vibration level, but vertical axis was the highest value at 25m point and longitudinal axis was the highest value at 50m point in vibration velocity. The amount of measurement was high value when measuring point is higher than blasting source, while that of measurement was low value when measuring point is lower than blasting source. In the measurement of the apartment, 2 axis was the highest value in vibration level, but in vibration velocity transverse axis was the highest value at ground, was vertical axis at 1st floor, was longitudinal axis at 3rd floor and was vertical and longitudinal axis at 5th floor. The vibration level and the vibration velocity of 50m point showed higher correlation value than 25m point at the ground, but those of 25m point showed higher correlation value than 50m point at the apartment.

  • PDF

Infrared Thermography Characterization of Defects in Seamless Pipes Using an Infrared Reflector

  • Park, Hee-Sang;Choi, Man-Yong;Park, Jeong-Hak;Lee, Jea-Jung;Kim, Won-Tae;Lee, Bo-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.284-290
    • /
    • 2012
  • Infrared thermography uses infrared energy radiated from any objects above absolute zero temperature, and the range of its application has been constantly broadened. As one of the active test techniques detecting radiant energy generated when energy is applied to an object, ultrasound infrared thermography is a method of detecting defects through hot spots occurring at a defect area when 15~100 kHz of ultrasound is excited to an object. This technique is effective in detecting a wide range affected by ultrasound and vibration in real time. Especially, it is really effective when a defect area is minute. Therefore, this study conducted thermography through lock-in signal processing when an actual defect exists inside the austenite STS304 seamless pipe, which simulates thermal fatigue cracks in a nuclear power plant pipe. With ultrasound excited, this study could detect defects on the rear of a pipe by using an aluminium reflector. Besides, by regulating the angle of the aluminium reflector, this study could detect both front and rear defects as a single infrared thermography image.

The Characteristics of Blasting Vibration in the Construction of Apartment and Buildings in Urban Area (도심지 발파공사장의 발파진동 특성)

  • 장서일;이연수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.632-638
    • /
    • 2004
  • In order to evaluate the effect of blasting vibration in buildings and it's resident located around blasting construction field in urban area, blasting vibration characteristics were measured by the vibration level, vibration velocity. The 250g and 750g of charged powder were used at the apartment and at the ground, respectively. In the measurement of the ground, 2 (perpendicularity) axis was the highest value in vibration level, but vertical direction was the highest value at 25 m point and longitudinal direction was the highest value at 50 m point in vibration velocity. The amount of measurement was high value when measuring point is higher than blasting source, while that of measurement was low value when measuring point is lower than blasting source. In the measurement of the apartment, Z axis was the highest value in vibration level, but in vibration velocity transverse direction was the highest value at ground, was vertical direction at 1st floor, was longitudinal direction at 3rd floor and was vertical and longitudinal direction at 5th floor. The vibration level and the vibration velocity of 50 m point showed higher correlation value than 25 m point at the ground, but those of 25 m point showed higher correlation value than 50 m point at the apartment.

Detection of laser doppler blood flow signal from human teeth

  • Ikawa, M.;Iiyama, M.;Shimauchi, H.
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.546.1-546
    • /
    • 2003
  • Laser doppler flowmeter (LDF) has been applied to the measurement of pulpal blood flow (PBF) in human teeth. As far as we searched, the detection area of the pulp in the blood flow measurement has not been clarified, yet. Therefore, the purpose of this study was to obtain information of the detection area in PBF measurement using LDF. The experiments were performed on the artificial blood circulation in extracted human upper central incisors. The apical portions of examined teeth (n=6) were severed and root canals were enlarged from the apical end to the 2mm incisal to the level of enamel-cement junction. An individual resin cap of each tooth was prepared and a hole was drilled 2mm incisal to enamel-cement junction of the labial side of the cap. The measurement probe of LDF (MBF3D, Moor Instrument, UK) was plugged into the hole of the cap. Heparinized human peripheral blood, which was in advance collected and diluted 3 times with physiological saline, was pumped through the apical foramen of the teeth via a silicone tube and a disposable needle (o.d. 0.7mm) and blood flow signals were monitored. The flux signal significantly increased with the enlargement of the root canal to incisal direction (p<0.01, Friedman analysis). The result indicates that the performance of LDF in PBF with human teeth is limited.

  • PDF