• Title/Summary/Keyword: Area Detection

Search Result 3,274, Processing Time 0.027 seconds

A Study on Pedestrians Tracking using Low Altitude UAV (저고도 무인항공기를 이용한 보행자 추적에 관한 연구)

  • Seo, Chang Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.4
    • /
    • pp.227-232
    • /
    • 2018
  • In this paper, we propose a faster object detection and tracking method using Deep Learning, UAV(unmanned aerial vehicle), Kalman filter and YOLO(You Only Look Once)v3 algorithms. The performance of the object tracking system is decided by the performance and the accuracy of object detecting and tracking algorithms. So we applied to the YOLOv3 algorithm which is the best detection algorithm now at our proposed detecting system and also used the Kalman Filter algorithm that uses a variable detection area as the tracking system. In the experiment result, we could find the proposed system is an excellent result more than a fixed area detection system.

A Three-scale Pedestrian Detection Method based on Refinement Module (Refinement Module 기반 Three-Scale 보행자 검출 기법)

  • Kyungmin Jung;Sooyong Park;Hyun Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.5
    • /
    • pp.259-265
    • /
    • 2023
  • Pedestrian detection is used to effectively detect pedestrians in various situations based on deep learning. Pedestrian detection has difficulty detecting pedestrians due to problems such as camera performance, pedestrian description, height, and occlusion. Even in the same pedestrian, performance in detecting them can differ according to the height of the pedestrian. The height of general pedestrians encompasses various scales, such as those of infants, adolescents, and adults, so when the model is applied to one group, the extraction of data becomes inaccurate. Therefore, this study proposed a pedestrian detection method that fine-tunes the pedestrian area by Refining Layer and Feature Concatenation to consider various heights of pedestrians. Through this, the score and location value for the pedestrian area were finely adjusted. Experiments on four types of test data demonstrate that the proposed model achieves 2-5% higher average precision (AP) compared to Faster R-CNN and DRPN.

Face Region Detection Algorithm using Euclidean Distance of Color-Image (칼라 영상에서 유클리디안 거리를 이용한 얼굴영역 검출 알고리즘)

  • Jung, Haing-sup;Lee, Joo-shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.79-86
    • /
    • 2009
  • This study proposed a method of detecting the facial area by calculating Euclidian distances among skin color elements and extracting the characteristics of the face. The proposed algorithm is composed of light calibration and face detection. The light calibration process performs calibration for the change of light. The face detection process extracts the area of skin color by calculating Euclidian distances to the input images using as characteristic vectors color and chroma in 20 skin color sample images. From the extracted facial area candidate, the eyes were detected in space C of color model CMY, and the mouth was detected in space Q of color model YIQ. From the extracted facial area candidate, the facial area was detected based on the knowledge of an ordinary face. When an experiment was conducted with 40 color images of face as input images, the method showed a face detection rate of 100%.

  • PDF

Hybrid Operational Concept with Chemical Detection UAV and Stand-off Chemical Detector for Toxic Chemical Cloud Detection (화학오염운 탐지를 위한 접촉식 화학탐지기를 탑재한 무인기와 원거리 화학탐지기의 복합 운용개념 고찰)

  • Lee, Myeongjae;Chong, Eugene;Jeong, Young-Su;Lee, Jae-Hwan;Nam, Hyunwoo;Park, Myung-Kyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.302-309
    • /
    • 2020
  • Early-detection and monitoring of toxic chemical gas cloud with chemical detector is essential for reducing the number of casualties. Conventional method for chemical detection and reconnaissance has the limitation in approaching to chemically contaminated site and prompt understanding for the situation. Stand-off detector can detect and identify the chemical gas at a long distance but it cannot know exact distance and position. Chemical detection UAV is an emerging platform for its high mobility and operation safety. In this study, we have conducted chemical gas cloud detection with the stand-off chemical detector and the chemical detection UAV. DMMP vapor was generated in the area where the cloud can be detected through the field of view(FOV) of stand-off chemical detector. Monitoring the vapor cloud with standoff detector, the chemical detection UAV moved back and forth at the area DMMP vapor being generated to detect the chemical contamination. The hybrid detection system with standoff cloud detection and point detection by chemical sensors with UAV seems to be very efficient as a new concept of chemical detection.

Multiple Plane Area Detection Using Self Organizing Map (자기 조직화 지도를 이용한 다중 평면영역 검출)

  • Kim, Jeong-Hyun;Teng, Zhu;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.22-30
    • /
    • 2011
  • Plane detection is very important information for mission-critical of robot in 3D environment. A representative method of plane detection is Hough-transformation. Hough-transformation is robust to noise and makes the accurate plane detection possible. But it demands excessive memory and takes too much processing time. Iterative randomized Hough-transformation has been proposed to overcome these shortcomings. This method doesn't vote all data. It votes only one value of the randomly selected data into the Hough parameter space. This value calculated the value of the parameter of the shape that we want to extract. In Hough parameters space, it is possible to detect accurate plane through detection of repetitive maximum value. A common problem in these methods is that it requires too much computational cost and large number of memory space to find the distribution of mixed multiple planes in parameter space. In this paper, we detect multiple planes only via data sampling using Self Organizing Map method. It does not use conventional methods that include transforming to Hough parameter space, voting and repetitive plane extraction. And it improves the reliability of plane detection through division area searching and planarity evaluation. The proposed method is more accurate and faster than the conventional methods which is demonstrated the experiments in various conditions.

State Machine and Downhill Simplex Approach for Vision-Based Nighttime Vehicle Detection

  • Choi, Kyoung-Ho;Kim, Do-Hyun;Kim, Kwang-Sup;Kwon, Jang-Woo;Lee, Sang-Il;Chen, Ken;Park, Jong-Hyun
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.439-449
    • /
    • 2014
  • In this paper, a novel vision-based nighttime vehicle detection approach is presented, combining state machines and downhill simplex optimization. In the proposed approach, vehicle detection is modeled as a sequential state transition problem; that is, vehicle arrival, moving, and departure at a chosen detection area. More specifically, the number of bright pixels and their differences, in a chosen area of interest, are calculated and fed into the proposed state machine to detect vehicles. After a vehicle is detected, the location of the headlights is determined using the downhill simplex method. In the proposed optimization process, various headlights were evaluated for possible headlight positions on the detected vehicles; allowing for an optimal headlight position to be located. Simulation results were provided to show the robustness of the proposed approach for nighttime vehicle and headlight detection.

Face region detection algorithm of natural-image (자연 영상에서 얼굴영역 검출 알고리즘)

  • Lee, Joo-shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.55-60
    • /
    • 2014
  • In this paper, we proposed a method for face region extraction by skin-color hue, saturation and facial feature extraction in natural images. The proposed algorithm is composed of lighting correction and face detection process. In the lighting correction step, performing correction function for a lighting change. The face detection process extracts the area of skin color by calculating Euclidian distances to the input images using as characteristic vectors color and chroma in 20 skin color sample images. Eye detection using C element in the CMY color model and mouth detection using Q element in the YIQ color model for extracted candidate areas. Face area detected based on human face knowledge for extracted candidate areas. When an experiment was conducted with 10 natural images of face as input images, the method showed a face detection rate of 100%.

MSER-based Character detection using contrast differences in natural images (자연 이미지에서 명암차이를 이용한 MSER 기반의 문자 검출 기법)

  • Kim, Jun Hyeok;Lee, Sang Hun;Lee, Gang Seong;Kim, Ki Bong
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.27-34
    • /
    • 2019
  • In this paper, we propose a method to remove the background area by analyzing the pattern of the character area. In the character detection result of the MSER(Maximally Stable External Regions) method which distinguishes a region having a constant contrast background regions were detected. To solve this problem, we use the MSER method in natural images, the background is removed by calculating the change rate by searching the character area and the background area which are not different from the areas where the contrast values are different from each other. However, in the background removed image, using the LBP(Local Binary Patterns) method, the area with uniform values in the image was determined to be a character area and character detection was performed. Experiments were carried out with simple images with backgrounds, images with frontal characters, and images with slanted images. The proposed method has a high detection rate of 1.73% compared with the conventional MSER and MSER + LBP method.

Selection of Monitoring Nodes to Maximize Sensing Area in Behavior-based Attack Detection

  • Chong, Kyun-Rak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.73-78
    • /
    • 2016
  • In wireless sensor networks, sensors have capabilities of sensing and wireless communication, computing power and collect data such as sound, movement, vibration. Sensors need to communicate wirelessly to send their sensing data to other sensors or the base station and so they are vulnerable to many attacks like garbage packet injection that cannot be prevented by using traditional cryptographic mechanisms. To defend against such attacks, a behavior-based attack detection is used in which some specialized monitoring nodes overhear the communications of their neighbors(normal nodes) to detect illegitimate behaviors. It is desirable that the total sensing area of normal nodes covered by monitoring nodes is as large as possible. The previous researches have focused on selecting the monitoring nodes so as to maximize the number of normal nodes(node coverage), which does not guarantee that the area sensed by the selected normal nodes is maximized. In this study, we have developed an algorithm for selecting the monitoring nodes needed to cover the maximum sensing area. We also have compared experimentally the covered sensing areas computed by our algorithm and the node coverage algorithm.

The Application of Pictometry for Efficient Digital Change Detection in Urban Area (효율적인 수치판독업무를 위한 다방향 영상촬영시스템의 활용방안)

  • Kim, Won-Dae;Song, Yeong-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.455-461
    • /
    • 2010
  • It is one among very important works to detect change in urban area for effectively maintaining city. But, recently it is become more difficult to extract various changes using traditional method based on orthophotos because objects in urban area get higher and become more complex. To resolve these problems, we introduce new digital imagining system Pictometry which can acquire images of five directions (oblique and nadir). In this study, we compared the digital interpretation results based on Pictometry to the results from traditional method. As a result, Pictometry showed the good results in change detection of urban area.