• Title/Summary/Keyword: Area Detection

Search Result 3,274, Processing Time 0.027 seconds

A Fast Method for Face Detection Based on PCA and SVM (PCA와 SVM에 기반하는 빠른 얼굴탐지 방법)

  • Xia, Chun-Lei;Shin, Hyeon-Gab;Park, Myeong-Chul;Ha, Seok-Wun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1129-1135
    • /
    • 2007
  • Human face detection technique plays an important role in computer vision area. It has lots of applications such as face recognition, video surveillance, human computer interface, face image database management, and querying image databases. In this paper, a fast face detection approach using Principal Component Analysis (PCA) and Support Vector Machines (SVM) is proposed based on the previous study on face detection technique. In the proposed detection system, firstly it filter the face potential area using statistical feature which is generated by analyzing the local histogram distribution the detection process is speeded up by eliminating most of the non-face area in this step. In the next step, PCA feature vectors are generated, and then detect whether there are faces present in the test image using SVM classifier. Finally, store the detection results and output the results on the test image. The test images in this paper are from CMU face database. The face and non-face samples are selected from the MIT data set. The experimental results indicate the proposed method has good performance for face detection.

Optimal Sensor Placement in Multistatic Sonar (다중 상태 소나의 최적 수신망 배치)

  • Lee, Kwang-Hee;Han, Dong-Seog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.630-634
    • /
    • 2012
  • It is very important to place receiver in multistatic sonar. Inefficient placement of the receiver reduce detection probability and to increase the probability of detection should be used more receivers. Therefore, detection of targets in searching area, detection performance of limited receiver depends on how to place. Through the optimized receiver placement, detection area between each sonar as much as possible avoid duplication, as optimization, the minimum receiver can be maintained detection performance. In this paper we prove mathematical verification of maximum signal excess value based on sonar placement and we calculate a signal excess value by using computer simulations and suggest optimal sonar placement.

Research on the Applicability of Target-detection Methods for Land-based Hyperspectral Imaging

  • Qianghui Wang;Bing Zhou;Wenshen Hua;Jiaju Ying;Xun Liu;Lei Deng
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.282-299
    • /
    • 2024
  • Target detection (TD) is a research hotspot in the field of hyperspectral imaging (HSI). Traditional TD methods often mine targets from HSIs under a single imaging condition, without considering the influence of imaging conditions. In fact, the spectra of ground objects in HSIs are uncertain and affected by the imaging conditions (weather, atmospheric, light, time, and other angle conditions including zenith angle). Hyperspectral data changes under different imaging conditions. Therefore, the detection result for a single imaging condition cannot accurately reflect the effectiveness of the detection method used. It is necessary to analyze the performance of various detection methods under different imaging conditions, to find a more applicable detection method. In this paper, we study the performance of TD methods under various land-based imaging conditions. We first summarize classical TD methods and evaluation methods. Then, the detection effects under various imaging conditions are analyzed. Finally, the concepts of the stability coefficient (SC) and effective area under the curve (EAUC) are proposed to comprehensively evaluate the applicability of detection methods under land-based imaging conditions, in terms of both detection accuracy and stability. This is conducive to our selection of detection methods with better applicability in land-based contexts, to improve detection accuracy and stability.

Development of a Passive Infrared Detector Algorithm for the Stop-line Detector of a Signalized Intersection (신호교차로의 정지선 검지기를 위한 수동형 적외선 검지기 알고리즘 개발(점유시간을 중심으로))

  • Jeong Sok-Min;Lee Seung-Hwan;Kim Nam-Sun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.1 s.2
    • /
    • pp.25-40
    • /
    • 2003
  • The purpose of this thesis is development of detection algorithm for stop-line detector. Detail detection area is set in basing detection area($1.8{\times}4.0m$) and traffic information(volume, occupancy, nonoccupancy) is collected by passive infrared detector at designing detection area. The basis detection area($1.8{\times}4.0m$) is named existing PIR and detection area applied on development algorithm is named proposal PIR. The proposal PIR is collected data such volume, occupancy, nonoccupancy, speed and lane change, but this thesis is limited to evaluate for volume, occupancy and nonoccupancy The procedure and each step of being developed algorithm is described in the next (1) The detection area of proposal PIR is made up of 2 of $1.8{\times}0.6m$ size(the detection area is named 1 and 3) and 1 of $1.8{\times}1.78m$ size(the detection area is named 2) (2) The image detection area is set on monitor to analyze outdoor photographing data then video frame analysis has been done by analyzer. (3) The occupancy, nonoccupancy and speed data of vehicle have been collected with the detection area 1 and 3 and lane change has been collected with combination of detection area 1, 2 and 3 The MAD and MAPE have been utilized to being compared with volume, occupancy and nonoccupancy for the field application and evaluation of a algorithm As the result, the proposal PIR data have been identified superior to the existing PIR data and the effect has been improved its information(volume, occupancy and nonoccupancy)

  • PDF

An Efficient Goal Area Detection Method in Soccer Game Video (축구경기 동영상에서의 효율적인 골영역 검출 방법)

  • 우성형;전승철;박성한
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.81-84
    • /
    • 2000
  • In this paper, we propose an efficient method to extract a goal area which may be closely related to the scoring highlight. In our method, the boundary between the ground and the non-ground area is used. An efficient methods for a rapid detection of both the boundary and then the goal area are proposed. Our simulation results show that our method is very reliable and takes less processing time compared with previous methods. This performance improvements may be caused by the use of a general simple feature.

  • PDF

Palm Area Detection by Maximum Hand Width (손 최장너비 기반 손바닥 영역 검출)

  • Choi, Eun Chang;Kim, Jun Yeon;Lee, Jae Won;Lim, Jong Gwan
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.4
    • /
    • pp.398-405
    • /
    • 2018
  • In the HCI, hand gesture recognition is attracting attention as a method for interaction and information exchange between users and devices along with the development of IT devices. In hand gesture recognition through image processing, palm region detection is a key process contributing to improvement of processing speed and recognition rate. In this paper, we propose a new method for image segmentation between the hand and wrist for palm area detection. The anatomical characteristics of the hand are used to calculate the distance between the iliac bones of the thumb and little finger, which have the widest width, by the horizontal projection histogram of the hand image, and then the palm area is detected by drawing a circle having the width as the diameter. In order to verify the superiority of this method, multiple stage template matching is used to compare and evaluate recognition performance against the four conventional methods for 10 hand gestures. Note that the literatures to offer palm area detection performance evaluation are few although there are many studies on hand gesture recognition.

Drivable Area Detection with Region-based CNN Models to Support Autonomous Driving

  • Jeon, Hyojin;Cho, Soosun
    • Journal of Multimedia Information System
    • /
    • v.7 no.1
    • /
    • pp.41-44
    • /
    • 2020
  • In autonomous driving, object recognition based on machine learning is one of the core software technologies. In particular, the object recognition using deep learning becomes an essential element for autonomous driving software to operate. In this paper, we introduce a drivable area detection method based on Region-based CNN model to support autonomous driving. To effectively detect the drivable area, we used the BDD dataset for model training and demonstrated its effectiveness. As a result, our R-CNN model using BDD datasets showed interesting results in training and testing for detection of drivable areas.

The horizontal line detection method using Haar-like features and linear regression in infrared images

  • Park, Byoung Sun;Kim, Jae Hyup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.29-36
    • /
    • 2015
  • In this paper, we propose the horizontal line detection using the Haar-like features and linear regression in infrared images. In the marine environment horizon image is very useful information on a variety of systems. In the proposed method Haar-like features it was noted that the standard deviation be calculated in real time on a static area. Based on the pixel position, calculating the standard deviation of the around area in real time and, if the reaction is to filter out the largest pixel can get the energy map of the area containing the straight horizontal line. In order to select a horizontal line of pixels from the energy map, we applied the linear regression, calculating a linear fit to the transverse horizontal line across the image to select the candidate optimal horizontal. The proposed method was carried out in a horizontal line detecting real infrared image experiment for day and night, it was confirmed the excellent detection results than the legacy methods.

Location-based Area Setup Method and Optimization Technique for Deviation Detection (위치기반 영역 설정 방법 및 이탈 검출의 최적화 기법)

  • Choi, Jae-Hyun;Lim, Yang-Won;Lim, Han-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.4
    • /
    • pp.19-28
    • /
    • 2014
  • Recent advancements in the IT industry have made daily life more convenient than ever before. In particular, studies have focused on the position detection of individuals using the GPS in smartphones, and this application has been utilized actively in emergency rescue organizations. However, existing methods send the location information of a user to a predetermined guardian set by the user or to a control center when the user enters into or deviates from a predetermined space. Such spaces are created by an arbitrary radius, thereby making it difficult to set a detailed area by using an existing radius-area creation method in an unstructured space and path with a specific road, such as for trekking, amusement parks, or mountaineering. This study proposes a novel method for setting up an area by connecting multiple radii to improve the existing radius-area creation method in order to easily set a detailed area in smart devices or on the Internet. In addition, an optimization method for resource use is proposed by comparing the operation results in which a user's location is detected by using the proposed location-based area setup method and deviation detection.

Face Detection Using Features of Hair and Faces (헤어와 얼굴의 특징을 이용한 얼굴 검출)

  • Hwang Dong-Guk;Lee Sang-Ju;Choi Dong-Jin;Park Hee-Jung;Jun Byoung-Min;Lee Woo-Ram
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.2
    • /
    • pp.199-205
    • /
    • 2005
  • In this paper, we present a face detection algorithm which uses the features of color and Geometry of faces and hairs appeared in images. after candidate area detection using color features, background areas are removed by the deviation of luminance in each of candidate areas. And then, final face area is detected using feature of geometry between face and hair. Performance of the presented algorithm is evaluated by detection rate test. The test result showed high detection rate.

  • PDF