• Title/Summary/Keyword: Are Tube

Search Result 4,765, Processing Time 0.034 seconds

Simulations of fluidelastic forces and fretting wear in U-bend tube bundles of steam generators: Effect of tube-support conditions

  • Hassan, Marwan;Mohany, Atef
    • Wind and Structures
    • /
    • v.23 no.2
    • /
    • pp.157-169
    • /
    • 2016
  • The structural integrity of tube bundles represents a major concern when dealing with high risk industries, such as nuclear steam generators, where the rupture of a tube or tubes will lead to the undesired mixing of the primary and secondary fluids. Flow-induced vibration is one of the major concerns that could compromise the structural integrity. The vibration is caused by fluid flow excitation. While there are several excitation mechanisms that could contribute to these vibrations, fluidelastic instability is generally regarded as the most severe. When this mechanism prevails, it could cause serious damage to tube arrays in a very short period of time. The tubes are therefore stiffened by means of supports to avoid these vibrations. To accommodate the thermal expansion of the tube, as well as to facilitate the installation of these tube bundles, clearances are allowed between the tubes and their supports. Progressive tube wear and chemical cleaning gradually increases the clearances between the tubes and their supports, which can lead to more frequent and severe tube/support impact and rubbing. These increased impacts can lead to tube damage due to fatigue and/or wear at the support locations. This paper presents simulations of a loosely supported multi-span U-bend tube subjected to turbulence and fluidelastic instability forces. The mathematical model for the loosely-supported tubes and the fluidelastic instability model is presented. The model is then utilized to simulate the nonlinear response of a U-bend tube with flat bar supports subjected to cross-flow. The effect of the support clearance as well as the support offset are investigated. Special attention is given to the tube/support interaction parameters that affect wear, such as impact and normal work rate.

A Numerical Study of the Performance of a Contoured Shock Tube for Needle-free Drug Delivery

  • Rasel, Md. Alim Iftekhar;Kim, Heuy Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.2
    • /
    • pp.32-38
    • /
    • 2012
  • In recent years a unique drug delivery system named as the transdermal drug delivery system has been developed which can deliver drug particles to the human skin without using any external needle. The solid drug particles are accelerated by means of high speed gas flow through a shock tube imparting enough momentum so that particles can penetrate through the outer layer of the skin. Different systems have been tried and tested in order to make it more convenient for clinical use. One of them is the contoured shock tube system (CST). The contoured shock tube consists of a classical shock tube connected with a correctly expanded supersonic nozzle. A set of bursting membrane are placed upstream of the nozzle section which retains the drug particle as well as initiates the gas flow (act as a diaphragm in a shock tube). The key feature of the CST system is it can deliver particles with a controllable velocity and spatial distribution. The flow dynamics of the contoured shock tube is analyzed numerically using computational fluid dynamics (CFD). To validate the numerical approach pressure histories in different sections on the CST are compared with the experimental results. The key features of the flow field have been studied and analyzed in details. To investigate the performance of the CST system flow behavior through the shock tube under different operating conditions are also observed.

An Intraoral Miniature X-ray Tube Based on Carbon Nanotubes for Dental Radiography

  • Kim, Hyun Jin;Kim, Hyun Nam;Raza, Hamid Saeed;Park, Han Beom;Cho, Sung Oh
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.799-804
    • /
    • 2016
  • A miniature X-ray tube based on a carbon-nanotube electron emitter has been employed for the application to a dental radiography. The miniature X-ray tube has an outer diameter of 7 mm and a length of 47 mm. The miniature X-ray tube is operated in a negative high-voltage mode in which the X-ray target is electrically grounded. In addition, X-rays are generated only to the teeth directions using a collimator while X-rays generated to other directions are shielded. Hence, the X-ray tube can be safely inserted into a human mouth. Using the intra-oral X-ray tube, a dental radiography is demonstrated where the positions of an X-ray source and a sensor are reversed compared with a conventional dental radiography system. X-ray images of five neighboring teeth are obtained and, furthermore, both left and right molar images are achieved by a single X-ray shot of the miniature X-ray tube.

Simulation and Analysis of ECT Signals Obtained at Tubesheet and Tube Expansion Area

  • Song, Sung-Chul;Lee, Yun-Tai;Jung, Hee-Sung;Shin, Young-Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.3
    • /
    • pp.174-180
    • /
    • 2006
  • Steam generator (SG) tubes are expanded inside tubesheet holes by using explosive or hydraulic methods to be fixed in a tubesheet. In the tube expansion process, it is important to minimize the crevice gap between expanded tube and tube sheet. In this paper, absolute and differential signals are computed by a numerical method for several different locations of tube expansion inside and outside a tubesheet and signal variations due to tubesheet, tube expansion and operating frequencies are observed. Results show that low frequency is good for detecting tubesheet location in both types of signals and high frequency is suitable for sizing of tube diameter as well as the detection of transition region. Also learned is that the absolute signal is good for measuring tube diameter, while the differential signal is good for locating the top of tubesheet and both ends of the transition region. In the case of mingled anomaly with tube expansion and tubesheet, low frequency inspection is found to be useful to analyze the mixed signal.

Thermal performance comparisons of the glass evacuated tube solar collectors of different absorber tubes (진공관형 태양열 집열기의 내부형상 변화에 따른 성능 비교)

  • Kim, Yong;Seo, Tae-Beom;Yun, Seong-Eun;Kim, Young-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.595-598
    • /
    • 2005
  • The thermal performance of glass evacuated tube solar collectors are numerically and experimentally investigated. Four different shapes of solar collectors are considered and the performances of these solar collectors are compared. Dealing with a single collector tube, the effects of not only the shapes of the absorber tube but also the incidence angle of solar irradiation (beam radiation) on thermal performance of the collector are studied. However the solar irradiation consists of the beam radiation as well as the diffuse radiation. Also, the interference of solar irradiation and heat transfer interaction between the tubes exist in an actual solar collector. These effects are considered in this study experimentally and numerically the accuracy of the numerical model is verified by the experimental results. The result shows that the thermal performance of the absorber used a plate fin and U-tube is the best.

  • PDF

A study on the process of tube end spinning by the upper bound method and the finite element method (상계해법과 유한요소법을 이용한 스피닝공정 해석에 관한 연구)

  • 김전형;홍성인;이정환;이영선
    • Transactions of Materials Processing
    • /
    • v.6 no.6
    • /
    • pp.517-526
    • /
    • 1997
  • The purpose of this study is to investigate changes in the wall thickness of tube sinking and working forces by the upper bound method and ABAQUS code. The independent variables are ; workpiece material, original wall thickness of tube, die angle, friction, and reduction of diameter. The results indicate that these five variables are factors of the increase in wall-thickness and working forces. Three variables, a inner tube wall angle and two angles of the velocity discontinuous surfaces, are optimized in this proposed velocity field by the upper bound method. In this method, we can estimate the working forces and final tube thicknesses similar to actual forming process. Optimum process variables which are obtained by upper bound method are used in ABAQUS pre-model.

  • PDF

Characteristics of Thermo-Fluid Flow in Dilution Chamber of Micro-Dilution Tunnel for Diesel Particulate Measurement (디젤매연측정용 마이크로 희석터널의 희석챔버에서의 열유동 특성)

  • 김태권;김성훈;임문혁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.90-99
    • /
    • 2002
  • The main purpose of this study lies on the development of micro dilution tunnel based on the Sierra Dilution chamber model. As a primary examination, characteristics of flow and temperature distributions during the steady dilution process in dilution chamber are observed with numerical analysis. The penetration of dilution air through porous tube as well as wall temperature and temperature gradient inside porous tube are examined. The thermophoretic velocity in terms of temperature behavior inside porous tube are defined and examined. Based on the ratio of penetration and thermophoretic velocities, all part of porous tube are shown to be safe from the particulate depositions. However, The inlet portion of porous tube in addition to the portion of impinging of dilution air are marginally safe from the particulate depositions. Generally the safer design against particulate deposition is required in provision f3r steady dilution process and for transient process as well.

Performance comparisons of the glass evacuated tube solar collectors of different absorber tubes (진공관형 태양열 집열기의 흡수관 형상 변화에 따른 성능 비교)

  • Kim, Yong;Seo, Tae-Beom;Yun, Seong-Eun;Kim, Young-Min
    • New & Renewable Energy
    • /
    • v.2 no.1 s.5
    • /
    • pp.56-65
    • /
    • 2006
  • The thermal performance of glass evacuated tube solar collectors are numerically and experimentally investigated. Four different shapes of solar collectors are considered and the performances of these solar collectors are compared. Dealing with a single collector tube, the effects of not only the shapes of the absorber tube but also the incidence angle of solar irradiation (beam irradiation) on thermal performance of the collector are studied. However, the solar irradiation consists of the beam irradiation as well as the diffuse irradiation. Also, the interference of solar irradiation and heat transfer interaction between the tubes exist in an actual solar collector, These effects are considered in this study experimentally and numerically. The accuracy of the numerical model is verified by the experimental results. The result shows that the thermal performance of the absorber used a plate fin and U-tube is the best.

  • PDF

An Experimental Study of the Performance Characteristics on Multiple-tube Heat Exchanger in the Vapor Compression Refrigeration System (증기압축식 냉동장치에서 다증관 열교환기의 성능특성에 관한 실험적 연구)

  • Kim, Jae-Dol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • This paper is performed to develop a tripple-tube exchanger which can improve the system efficiency. Three different tube diameters are compacted by one body(tripple-tube) to recover waste heat from heat exchanging among the fluids. With this, the tripple-tube shows higher cooling capacity than the double-tube after comparing between those two systems. The results of this paper are basic data to design the optimum tripple-tube heat exchanger.

Tube Bending Analysis for Hydroforming Process (Tube Hydroforming을 이한 굽힘 공정해석)

  • 양재봉;전병희;오수익
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.249-256
    • /
    • 2000
  • Tube hydroforming is recently drawing attention of automotive industries due to its seberal advantages over conventional methods. It can produce wide range of products such as subframes, engine cradles, and exhaust manifolds with cheaper production cost by reducing overall number of processes. Tube hydroforming process is divided into prebending process and hydroforming process. Tube bending ins an important factor of the hydroforming process to enable the tube to be placed in the die cavity. This paper presents the theoretical analysis and the simulation results of the tube bending process. With some assumptions, approximate equations are derived to predict the thickness distribution on the cross section and the spring back of the bent tube. Bending simulations are carried out and compared to the analytical and experimental results.

  • PDF