• Title/Summary/Keyword: Are Tube

Search Result 4,765, Processing Time 0.039 seconds

Evaluation of Tube Hydroformability (Tube Hydroforming 공정의 성형성 평가)

  • 김영석;조흥수;박춘달;김영삼;조완제
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.604-614
    • /
    • 2000
  • In this paper, the mechanical characteristics and fundamental mechanism of a roll-formed tube during the hydroforming process are investigated in order to obtain the ewly localization of the tube hydroforming skills which are the core production techniques for the super light weight and high safety of the car body. Also, the theoretical influences of the material variables and the processes on the formability in the tube hydroforming are studied. In addition, the techniques to evaluate the forming limit of the bulging process of a tube are developed.

  • PDF

A Study for Performance Improvements in the Coaxial Type Stirling Pulse Tube Cryocooler (동축형 스털링 맥동관 냉동기의 성능개선에 관한 연구)

  • Park, S.J.;Hong, Y.J.;Kim, H.B.;Kim, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1329-1334
    • /
    • 2004
  • The most compact and convenient pulse tube cryocooler for practical applications is the coaxial type. It can replace Stirling cryocooler without any change to the Dewar or the connection to the cooled devices. The experimental results of the coaxial inertance tube pulse tube cryocooler for cooling superconductor RF filter are presented in this paper. To find optimal conditions of inertance tube pulse tube cryocooler, no load temperature according to the variations of inertance tube volume, reservoir volume are measured, and the cool down characteristics at the particular conditions are presented. In case of the coaxial type inertance tube pulse tube refrigerator, cool down time is the lowest in the inertance tube diameter of 1.3 mm and inertance tube length of 1900 mm and lowest temperature is 112K. This results are not satisfactory for practical applications. So, We propose vacuum insulation between regenerator and pulse tube in the Stirling type coaxial pulse tube cryocooler. Stirling type coaxial pulse tube cryocooler with the vacuum insulation between regenerator and pulse tube was designed and manufactured by KIMM(Korea Institute of Machinery and Materials). The optimal conditions will be tested for Stirling type coaxial pulse tube cryocooler with the vacuum insulation between regenerator and pulse tube.

  • PDF

An Experimental Study for the 77K Inertance Tube Pulse Tube Cryocooler (77K Inertance tube 맥동관 극저온 냉동기에 관한 연구)

  • Park, Seong-Je;Go, Deuk-Yong;Kim, Hyo-Bong
    • 연구논문집
    • /
    • s.29
    • /
    • pp.17-27
    • /
    • 1999
  • The experimental results of the 17K inertance tube pulse tube cryocooler for cooling cryosensors are presented in this paper. In prototype experiments, linear compressor is driven by linear motor, and inertance tubes are inserted between one liter reservoir and pulse tube. Design of the inertance tube pulse tube cryo-cooler is conducted by ARCOPTR program of NASA Ames Research Center. To find optimal conditions of inertance tube pulse tube cryocooler, no load temperature and refrigeration capacity according to the variations of inertance tube volume, reservoir volume and charging pressure are measured. and the cool down and load characteristics at the particular conditions are presented. As the representative results, no load temperature of the cold end is 52.7K and refrigeration capacity is 5W at 72K..

  • PDF

Flow and Heat Transfer Characteristics of a Multi-Tube Inserted Impinging Jet (노즐출구에 삽입된 다중관에 의한 충돌제트의 유동 및 열전달 특성)

  • Hwang, Sang-Dong;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.135-145
    • /
    • 2004
  • An experimental study is conducted to investigate the flow and heat transfer characteristics of a multi-tube inserted impinging jet. Four different multi-tube devices are tested for various nozzle-to-plate distance. Flow visualization by smoke-wire method and velocity measurements using a hot-wire anemometer are applied to analyze the flow characteristics of the multi-tube insert impinging jet. The local heat transfer coefficients of the multi-tube inserted impinging jet on the impingement surface are measured and the results are compared to those of the conventional jet. In multi-tube inserted system the multi-tube length plays an important role in the flow and heat transfer characteristics of the jet flow. With multi-tube insert of I3d4 and I6d4 which has relatively longer tube length than the multi-tube-exit of I3d1 and I6d1, the flow maintains its increased velocity far downstream due to interaction between adjacent flows. For the small H/D of 4, the local heat transfer coefficients of multi-tube inserted impinging jet are much higher than those of the conventional jet because the flow has higher velocity and turbulent intensity by the use of the multi-tube device. At large gap distance of H/D=12, also higher heat transfer rates are obtained by installing multi-tube insert except multi-tube insert of I3d1.

Condensation heat transfer characteristics of alternative refrigerants for CFC-11, CFC-12 for enhanced tubes (열전달 촉진관에서 CFC-11 및 CFC-12 대체냉매의 응축 열전달 특성 연구)

  • 조성준;황수민;정동수;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.569-580
    • /
    • 1998
  • In this study, condensation heat transfer coefficients(HTCs) of a plain tube, low fin tube, and Turbo-C enhanced tube for CFC-11, HCFC-123, CFC-12, HFC-l34a are measured and compared against each other. All data are taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling temperature 3~8$^{\circ}C$. Test results show that HTCs of a low vapor pressure refrigerant, HFC-123, for a plain, low fin, and Turbo-C tubes are 10.5~20.5%, 8.2~12.2%, 16.5~19.2% lower than those of CFC-11, respectively. On the other hand, HTCs of a medium vapor refrigerant, HFC-l34a, for a plain, low fin, and Turbo-C tubes are 20.6~31.8%, 0.0~8.0%, 13.2~20.9% higher than those of CFC-12, respectively. For all refrigerants tested, HTCs of Turbo-C tube are the highest among the three tubes showing almost 8 times increase in HTCs as compared to those of a plain tube. Nusselt's prediction equation for a plain tube yielded 12% deviation for all plain tube data while Realty and Katz's prediction equation for a low fin tube yielded 20% deviation for all low tube data.

  • PDF

Sensitivity Analysis on Hydraulic Expanded Tube-to-Tubesheet Joints for Tube Layout Patterns (튜브 배열에 따른 튜브/튜브시트 수압 확관 접합의 민감도 해석)

  • Kim, Dong-Yeong;Kim, Tae-Wan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1896-1903
    • /
    • 1999
  • The basic requirements to improve the joints quality of tube-to-tubesheet for heat exchangers are to obtain high residual contact pressures between the tubes and the tubesheet as well as low residual stresses in the transition zone of the tubes. The residual contact pressures and residual stresses which govern the joint quality are influenced by parameters such as material properties, geometric dimension of tube and tubesheet and expansion pressures. There are two types of tube layout patterns, triangular and square, which are frequently used for heat exchangers. The purpose of the present work is to examine the superior tube layout patterns considering the joints quality by comparing numerical results from sensitivity analyses which were performed for both of tube layout patterns.

Shear Lag Phenomenon of Tube Structure with Core Wall in Relation to Nondimensional Structural Parameters (튜브-전단벽 구조의 무차원 구조변수에 따른 전단지연 현상)

  • 유은정;이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.325-332
    • /
    • 2003
  • The tube structures act like cantilevered box beams and effectively resist lateral loads. In result, they are adopted as a high-rise buildings system. However, the shear lag in tube system prevents the idealized tube behavior such as a cantilevered box beam. Therefore, the studies on shear lag phenomena are necessarily requested. The presented papers are almost studied on framed tube structures and tube in tube structures. However, the study on the shear lag in the tube structure with core wall is lack. Thus, in this paper, the shear lag of the structure is studied. The shear lag coefficient is defined to investigate shear lag phenomena. However, existing shear lag coefficients are not adequate for understanding them. Therefore, on this study, new shear lag coefficient is suggested. In addition, the shear lag in the tube structure with core wall is analyzed by changing the five structural parameters of stiffness factor in frame, stiffness factor in wall, stiffness ratio, the number of stories and the number of bays.

  • PDF

Collapse assessment and seismic performance factors in tall tube-in-tube diagrid buildings

  • Khatami, Alireza;Heshmati, Mahdi;Aghakouchak, Ali Akbar
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.197-214
    • /
    • 2020
  • Diagrid structures have been introduced as a fairly modern lateral load-resisting system in the design of high-rise buildings. In this paper, a novel diagrid system called tube-in-tube diagrid building is introduced and assessed through pushover and incremental dynamic analyses. The main objectives of this paper are to find the optimum angle of interior and exterior diagrid tube and evaluate the efficiency of diagrid core on the probability of collapse comparing to the conventional diagrid system. Finally, the seismic performance factors of the proposed system are validated according to the FEMA P695 methodology. To achieve these, 36-story diagrid buildings with various external and internal diagonal angles are designed and then 3-D nonlinear models of these structures developed in PERFORM-3D. The results show that weight of steel material highly depends on diagonal angle of exterior tube. Adding diagrid core generally increases the over-strength factor and collapse margin ratio of tall diagrid buildings confirming high seismic safety margin for tube-in-tube diagrid buildings under severe excitations. Collapse probabilities of both structural systems under MCE records are less than 10%. Finally, response modification factor of 3.0 and over-strength factor of 2.0 and 2.5 are proposed for design of typical diagrid and tube-in-tube diagrid buildings, respectively.

An Experimental Study on the Local and Overall Heat Transfer Characteristics of a Fin-Flat Tube Heat Exchanger (납작관형 핀-관 열교환기의 국소 및 총합 열전달 특성에 관한 실험적 연구)

  • 유성연;정민호;박동성;이상섭
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.939-947
    • /
    • 2002
  • Local and overall heat transfer characteristics of fin-flat tube heat exchangers with and without vortex generators are investigated. Local heat transfer coefficients are measured with the heat exchanger model using naphthalene sublimation technique. In case of a fin-flat tube heat exchanger without vortex generators, only the horseshoe vortices formed around tubes augment the heat transfer. On the other hand, longitudinal vortices created artificially by vortex generators enhance heat transfer dramatically in case of a fin-flat tube heat exchanger with vortex generators. Overall heat transfer coefficients are measured with the prototype of the fin-flat tube heat exchanger with and without vortex generators in a wind tunnel and results are compared with those of a fin-circular tube heat exchanger with wavy fin. Friction losses for heat exchangers are also measured and compared. The fin-flat tube heat exchanger with vortex generators is found to be more effective than the fin-circular tube heat exchanger with wavy fin.

Heat Transfer Enhancement for Fin-Tube Heat Exchanger Using Vortex Generators

  • Yoo, Seong-Yeon;Park, Dong-Seong;Chung, Min-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.109-115
    • /
    • 2002
  • Vortex generators are fabricated on the fin surface of a fin-tube heat exchanger to augment the convective heat transfer. In addition to horseshoe vortices formed naturally around the tube of the fin-tube heat exchanger, longitudinal vortices are artificially created on the fin surface by vortex generators. The purpose of this study is to investigate the local heat transfer phenomena in the fin-tube heat exchangers with and without vortex generators, and to evaluate the effect of vortices on the heat transfer enhancement. Naphthalene sublimation technique is employed to measure local mass transfer coefficients, then analogy equation between heat and mass transfer is used to calculate heat transfer coefficients. Experiments are performed for the model of fin -circular tube heat exchangers with and without vortex generators, and of fin-flat tube heat exchangers with and without vortex generators. Average heat transfer coefficients of finn-flat tube heat exchanger without vertex generator are much lower than those of fin-circular tube heat exchanger. On the other hand, fin-flat tube heat exchanger with vortex generators has much higher heat transfer value than conventional fin-circular tube heat exchanger At the same time, pressure losses for four types of heat exchanger is measured and compared.