• Title/Summary/Keyword: Arduino Uno

Search Result 39, Processing Time 0.027 seconds

Implementation of Oscilloscope using Arduino Board (아두이노 보드를 이용한 오실로스코프 구현)

  • Choi, Byeong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.605-606
    • /
    • 2021
  • In this paper, one channel oscilloscope was implemented using arduino uno board and 1.8 inch TFT LCD. The oscilloscope is designed using the built-in analog to digital converter(ADC) inside arduino uno board as data acquisition unit and can handle up to about 1 KHz signal.

  • PDF

Using Arduino and RFID shield program development (아두이노와 RFID 실드를 사용한 프로그램 개발)

  • Lee, Kyung-mu;Lee, Sung-jin;Choi, Chul-kil;Kim, Jin-il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.961-964
    • /
    • 2013
  • Arduino is for design based on open source prototyping platform, artist, designer, hobby activists, etc, i has been designed for all those who are interested in the environment construct. Arduino adventage you can easily create applications hardware, without deep knowledge about the hardware. Configuration of arduino using AVR microcontroller ATmage 168, software to action arduino using arduino program, MATLAB, Processing. Arduino is open source base, you can hardware production directly and using shield additionally, the arduino can be combined. Android is open source. Continue to expand through a combination of hardware, Arduino. It name is shield. Be given to the Arduino Uno board to the main board, the shield extends to the various aspects and help can be equipped with more features. The shield on top of the shield can be combined as a kind of shield and Ethernet shield, motor shield, the shield RFID hardware beyond a simple extension can be configured. In this paper, sortware was used for arduino program, hardware was used for arduino Uno board, the additional shield using RFID shield. Configure the hardware to be compatible with this tag combined the 13.56MHz tag SM130.

  • PDF

Developed a Mifunction Smart Stand for Minimal Life (아두이노와 안드로이드 애플리케이션을 활용한 휴대용 간이 리프트 기능 개발)

  • Maeng, Won-woo;Moon, Sung-ho;Kang, Han-bit;Jeong, Ho-joon;Lee, Hyuk-eui;Choi, Ha-min;Kwon, Seo-jin;Ahn, Sung-min;Son, Tae-suk;Kim, Hyung-jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.380-382
    • /
    • 2018
  • In this study, we developed software for portable lifter using Android application for stability of portable lifter which can load freight easily. Arduino Uno R3 boards were used for this purpose. The existing portable lifts were disassembled to mount the Arduino Uno R3 board and circuit, and to send and receive signals via Bluetooth communication. This study can be expected to contribute greatly to the safety work of logistics activities.

  • PDF

Performance Comparison of Ascon-128 and AES-GCM AEAD Cryptographic Algorithm in Arduino-Uno (Ascon128과 AES-GCM AEAD 암호 알고리즘의 Arduino-Uno에서의 성능 비교)

  • Sung-Woo Yun;Sokjoon Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.172-173
    • /
    • 2023
  • 2018년 NIST에서 AEAD 형태의 암호를 가진 경량 암호 표준화 공모를 진행하였다. 이후 2라운드를 통해 최종적으로 10개의 경량 암호가 남게 되었고, 이후 2023년 2월에 ASCON 암호가 NIST 경량 암호 표준으로 지정되었다. 경량 암호의 표준이 된 만큼, 기존에 사용되던 AEAD 암호와는 속도나 메모리 사용량 등, 저사양 기기에 특화된 차이점이 존재할 것이다. 본 논문에서는 저사양 기기의 환경에서, 기존 AEAD 암호에 해당하는 AES-GCM과 이번 표준으로 지정된 ASCON 암호를Arduino-Uno에서 직접 실행함으로써 성능 면에서 어떤 차이점이 있는지 보인다.

Drone Hovering using PID Control (PID 제어를 이용한 드론의 호버링)

  • Oh, Ji-Wan;Seol, Jae-Won;Gong, Youn-Hee;Han, Seung-Jae;Lee, Seung-Dae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1269-1274
    • /
    • 2018
  • In this paper, it covers technical aspect of drone by introducing the drone hovering. Arduino Uno and 3-axis attitude and azimuth sensor are the two main components of the drone. Arduino Uno is used as a main controller and 3-axis attitude and azimuth sensor are used to collect axial (X,Y,Z) data, which is massaged to determine the pitch (fore and aft tilt) and the bank (side to side tilt). Furthermore, drone stabilizes horizontal attitude by correcting these tilted angle through PID control.

Automatic recognition of the old and the infirm using Arduino technology implementation (아두이노를 사용하여 노약자 자동 인식 기술 구현)

  • Choi, Chul-kil;Lee, Sung-jin;Choi, Byeong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.454-457
    • /
    • 2014
  • Arduino is for design based on open source prototyping platform, artist, designer, hobby activists, etc, i has been designed for all those who are interested in the environment construct. Arduino adventage you can easily create applications hardware, without deep knowledge about the hardware. Configuration of arduino using AVR microcontroller ATmage 168, software to action arduino using arduino program, MATLAB, Processing. Arduino is open source base, you can hardware production directly and using shield additionally, the arduino can be combined. Android is open source. Continue to expand through a combination of hardware, Arduino. It name is shield. Be given to the Arduino Uno board to the main board, the shield extends to the various aspects and help can be equipped with more features. The shield on top of the shield can be combined as a kind of shield and Ethernet shield, motor shield, the shield RFID hardware beyond a simple extension can be configured. In this paper, RFID technology Sealed for automatic recognition of the elderly by the elderly to identify and tag them SM130 13.56Mhz compatible hardware was constructed by combining tags.

  • PDF

Neural networks optimization for multi-dimensional digital signal processing in IoT devices (IoT 디바이스에서 다차원 디지털 신호 처리를 위한 신경망 최적화)

  • Choi, KwonTaeg
    • Journal of Digital Contents Society
    • /
    • v.18 no.6
    • /
    • pp.1165-1173
    • /
    • 2017
  • Deep learning method, which is one of the most famous machine learning algorithms, has proven its applicability in various applications and is widely used in digital signal processing. However, it is difficult to apply deep learning technology to IoT devices with limited CPU performance and memory capacity, because a large number of training samples requires a lot of memory and computation time. In particular, if the Arduino with a very small memory capacity of 2K to 8K, is used, there are many limitations in implementing the algorithm. In this paper, we propose a method to optimize the ELM algorithm, which is proved to be accurate and efficient in various fields, on Arduino board. Experiments have shown that multi-class learning is possible up to 15-dimensional data on Arduino UNO with memory capacity of 2KB and possible up to 42-dimensional data on Arduino MEGA with memory capacity of 8KB. To evaluate the experiment, we proved the effectiveness of the proposed algorithm using the data sets generated using gaussian mixture modeling and the public UCI data sets.

Design and Implementation of IoT-Based Intelligent Platform for Water Level Monitoring (IoT 기반 지능형 수위 모니터링 플랫폼 설계 및 구현)

  • Park, Jihoon;Kang, Moon Seong;Song, Jung-Hun;Jun, Sang Min
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.4
    • /
    • pp.177-186
    • /
    • 2015
  • The main objective of this study was to assess the applicability of IoT (Internet of Things)-based flood management under climate change by developing intelligent water level monitoring platform based on IoT. In this study, Arduino Uno was selected as the development board, which is an open-source electronic platform. Arduino Uno was designed to connect the ultrasonic sensor, temperature sensor, and data logger shield for implementing IoT. Arduino IDE (Integrated Development Environment) was selected as the Arduino software and used to develop the intelligent algorithm to measure and calibrate the real-time water level automatically. The intelligent water level monitoring platform consists of water level measurement, temperature calibration, data calibration, stage-discharge relationship, and data logger algorithms. Water level measurement and temperature calibration algorithm corrected the bias inherent in the ultrasonic sensor. Data calibration algorithm analyzed and corrected the outliers during the measurement process. The verification of the intelligent water level measurement algorithm was performed by comparing water levels using the tape and ultrasonic sensor, which was generated by measuring water levels at regular intervals up to the maximum level. The statistics of the slope of the regression line and $R^2$ were 1.00 and 0.99, respectively which were considered acceptable. The error was 0.0575 cm. The verification of data calibration algorithm was performed by analyzing water levels containing all error codes in a time series graph. The intelligent platform developed in this study may contribute to the public IoT service, which is applicable to intelligent flood management under climate change.

Development of Sensor and Block expandable Teaching-Aids-robot (센서 및 블록 확장 가능한 교구용 보조 로봇 개발)

  • Sim, Hyun;Lee, Hyeong-Ok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.2
    • /
    • pp.345-352
    • /
    • 2017
  • In this paper, we design and implement an educational robot system that can use scratch education with the function of user demanding to perform robot education in actual school site in an embedded environment. It is developed to enable physical education for sensing information processing, software design and programming practice training that is the basis of robotic system. The development environment of the system is Arduino Uno based product using Atmega 328 core, debugging environment based on Arduino Sketch, firmware development language using C language, OS using Windows, Linux, Mac OS X. The system operation process receives the control command of the server using the Bluetooth communication, and drives various sensors of the educational robot. The curriculum includes Scratch program and Bluetooth communication, which enables real-time scratch training. It also provides smartphone apps and is designed to enable education like C and Python through expansion. Teachers at the school site used the developed products and presented performance processing results satisfying the missionary needs of the missionaries.

An image analysis system Design using Arduino sensor and feature point extraction algorithm to prevent intrusion

  • LIM, Myung-Jae;JUNG, Dong-Kun;KWON, Young-Man
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.23-28
    • /
    • 2021
  • In this paper, we studied a system that can efficiently build security management for single-person households using Arduino, ESP32-CAM and PIR sensors, and proposed an Android app with an internet connection. The ESP32-CAM is an Arduino compatible board that supports both Wi-Fi, Bluetooth, and cameras using an ESP32-based processor. The PCB on-board antenna may be used independently, and the sensitivity may be expanded by separately connecting the external antenna. This system has implemented an Arduino-based Unauthorized intrusion system that can significantly help prevent crimes in single-person households using the combination of PIR sensors, Arduino devices, and smartphones. unauthorized intrusion system, showing the connection between Arduino Uno and ESP32-CAM and with smartphone applications. Recently, if daily quarantine is underway around us and it is necessary to verify the identity of visitors, it is expected that it will help maintain a safety net if this system is applied for the purpose of facial recognition and restricting some access. This technology is widely used to verify that the characters in the two images entered into the system are the same or to determine who the characters in the images are most similar to among those previously stored in the internal database. There is an advantage that it may be implemented in a low-power, low-cost environment through image recognition, comparison, feature point extraction, and comparison.