• Title/Summary/Keyword: Arctic sea ice

Search Result 133, Processing Time 0.022 seconds

Conceptual Design of A Satellite-Based Ice Navigation Supporting System For The Northern Sea Route (북극항로 안전운항지원 시스템 설계: 위성기반 개념 설계)

  • Yang, Chan-Su;Kim, Sun-Hwa;Hong, Sungchul;Kim, Chel-Ho;Heo, Ki-Young;Kim, Young-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.69-70
    • /
    • 2013
  • IPCC (International Panel on Climate Change) reported that the arctic sea-ice extent has been decreased by 2.7% per decades since satellite observations in 1978. The decreased sea-ice extent has gained an international attention due to its economical benefits from the NSR (Northen Sea Route). The NRS - not a clearly defined single route, but a number of alternative routes across the top of Russiahas a 37 % reduction in sailing distance, comparing to the SSR (Southen Sea Route) passing thourgh the Suez Canal. Sailing days are consequently reduced from 30 days to 20 days. Also, it is estimated that the Northen Sea has 20 to 25% of world's oil resources and occupies 40% of the world's fishery production. As Republic of Korea was admitted as an observer to the Arctic Council on May 15, 2013, there has been increasing needs to explore new route in the Northen Sea. In this situation, Korea Institute of Ocean Science & Technology (KIOST) is preparing a plan for the development of Arctic-circle Ocean Environmental Information System to support the ice navigation and resource exploration in the Arctic. We will introduce a conceptual design of a satellite-based ice navigation supporting system for the northern sea route.

  • PDF

A Study on Analysis of Ice Load Measured during the Voyage in the Arctic Sea (북극해 운항 중 계측된 빙하중에 대한 분석 연구)

  • Lee, Tak-Kee;Kim, Tae-Wook;Rim, Chae Whan;Kim, Heung-Sub
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.107-113
    • /
    • 2014
  • The icebreaking research vessel, ARAON had her second ice trial in the Arctic Sea from 16th July to 12th August 2010. During the voyage, the local ice loads acting on the bow of port side were measured from 14 strain gauges. The measurements were also carried out in ice waters with various ice concentration ratio as well as the icebreaking performance tests. In this study, the ice loads measured during the 'general' operation in ice waters were analyzed. As a first step, the relationship between the location of strain gauges and the ice loads were investigated, and then the possibility for observation of higher ice loads was estimated based on the probability density function. The relationship between the ship speed and the ice load was also investigated. 718 peak stresses data higher than 20 MPa obtained from strain gauges array attached in longitudinally and vertically was analyzed. In general, the ice load increases as the ship speed increases in the low ship speed range, and ice load decreases as the ship speed is greater than a certain speed.

Analysis on Winter Atmosphereic Variability Related to Arctic Warming (북극 온난화에 따른 겨울철 대기 변동성 분석 연구)

  • Kim, Baek-Min;Jung, Euihyun;Lim, Gyu-Ho;Kim, Hyun-Kyung
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.131-140
    • /
    • 2014
  • The "Barents Oscillation (BO)", first designated by Paul Skeie (2000), is an anomalous recurring atmospheric circulation pattern of high relevance for the climate of the Nordic Seas and Siberia, which is defined as the second Emperical Orthogonal Function (EOF) of monthly winter sea level pressure (SLP) anomalies, where the leading EOF is the Arctic Oscillation (AO). BO, however, did not attracted much interest. In recent two decades, variability of BO tends to increase. In this study, we analyzed the spatio-temporal structures of Atmospheric internal modes such as Arctic Oscillation (AO) and Barents Oscillation (BO) and examined how these are related with Arctic warming in recent decade. We identified various aspects of BO, not dealt in Skeie (2000), such as upper-level circulation and surface characteristics for extended period including recent decade and examined link with other surface variables such as sea-ice and sea surface temperature. From the results, it was shown that the BO showed more regionally confined spatial pattern compared to AO and has intensified during recent decade. The regional dipolelar structure centered at Barents sea and Siberia was revealed in both sea-level pressure and 500 hPa geopotential height. Also, BO showed a stronger link (correlation) with sea-ice and sea surface temperature especially over Barents-Kara seas suggesting it is playing an important role for recent Arctic amplification. BO also showed high correlation with Ural Blocking Index (UBI), which measures seasonal activity of Ural blocking. Since Ural blocking is known as a major component of Eurasian winter monsoon and can be linked to extreme weathers, we suggest deeper understanding of BO can provide a missing link between recent Arctic amplification and increase in extreme weathers in midlatitude in recent decades.

Profile Analysis on Signal Measured Local Ice Load during Icebreaking in Arctic Sea (북극해에서의 쇄빙시 국부 빙하중 계측 신호에 대한 파형 분석)

  • Jeon, Young-Ju;Rim, Chae-Whan;Lee, Tak-Kee
    • Journal of Navigation and Port Research
    • /
    • v.37 no.2
    • /
    • pp.143-148
    • /
    • 2013
  • The aim of this study is to investigate the characteristics on the profile of local ice load acting on side shell of port side in bow part due to broken ice during icebreaking of ships in ice covered waters. The first Korean icebreaking research vessel 'ARAON' had a sea ice field trial in the Arctic Sea during early August, 2010, and the signals due to local ice impact measured from several strain gauges installed at bow part were gathered. It is known that these data with structural response characteristics due to local ice impact have some different characteristics with a typical hydraulic impact pressure - time history. In this study, the time history on the measured signals was analyzed and the characteristic values were presented using non-dimensional parameters.

Modification of Local Ice Load Prediction Formula Based on IBRV ARAON's Arctic Field Data (쇄빙연구선 ARAON호의 북극해 실측 데이터에 기초한 국부 빙하중 추정식의 수정)

  • Cho, Sungrok;Choi, Kyungsik
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.161-167
    • /
    • 2019
  • This paper focuses on a newly designed ice load formula based on the ARAON's 2016 Arctic field data in order to improve a structural design against ice loads. The strain gage signals from ARAON's hull plating were converted to the local ice pressure upon the hull plating using the influence coefficient matrix and finite element analysis. First, a traditional pressure-area relationship is derived by applying probabilistic approaches to handle the strains measured onboard the ARAON. Then, the local ice load prediction formula is re-analyzed after reviewing the ARAON's additional field data to consider information about the ship speed and thickness of the sea ice. It is shown that the newly developed pressure-area relationship well reflects the influence of other design parameters such as the ship speed and ice thickness in the prediction of local ice loads on Arctic vessels.

A Study on Classifying Sea Ice of the Summer Arctic Ocean Using Sentinel-1 A/B SAR Data and Deep Learning Models (Sentinel-1 A/B 위성 SAR 자료와 딥러닝 모델을 이용한 여름철 북극해 해빙 분류 연구)

  • Jeon, Hyungyun;Kim, Junwoo;Vadivel, Suresh Krishnan Palanisamy;Kim, Duk-jin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.999-1009
    • /
    • 2019
  • The importance of high-resolution sea ice maps of the Arctic Ocean is increasing due to the possibility of pioneering North Pole Routes and the necessity of precise climate prediction models. In this study,sea ice classification algorithms for two deep learning models were examined using Sentinel-1 A/B SAR data to generate high-resolution sea ice classification maps. Based on current ice charts, three classes (Open Water, First Year Ice, Multi Year Ice) of training data sets were generated by Arctic sea ice and remote sensing experts. Ten sea ice classification algorithms were generated by combing two deep learning models (i.e. Simple CNN and Resnet50) and five cases of input bands including incident angles and thermal noise corrected HV bands. For the ten algorithms, analyses were performed by comparing classification results with ground truth points. A confusion matrix and Cohen's kappa coefficient were produced for the case that showed best result. Furthermore, the classification result with the Maximum Likelihood Classifier that has been traditionally employed to classify sea ice. In conclusion, the Convolutional Neural Network case, which has two convolution layers and two max pooling layers, with HV and incident angle input bands shows classification accuracy of 96.66%, and Cohen's kappa coefficient of 0.9499. All deep learning cases shows better classification accuracy than the classification result of the Maximum Likelihood Classifier.

Arctic Sea Ice Motion Measurement Using Time-Series High-Resolution Optical Satellite Images and Feature Tracking Techniques (고해상도 시계열 광학 위성 영상과 특징점 추적 기법을 이용한 북극해 해빙 이동 탐지)

  • Hyun, Chang-Uk;Kim, Hyun-cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1215-1227
    • /
    • 2018
  • Sea ice motion is an important factor for assessing change of sea ice because the motion affects to not only regional distribution of sea ice but also new ice growth and thickness of ice. This study presents an application of multi-temporal high-resolution optical satellites images obtained from Korea Multi-Purpose Satellite-2 (KOMPSAT-2) and Korea Multi-Purpose Satellite-3 (KOMPSAT-3) to measure sea ice motion using SIFT (Scale-Invariant Feature Transform), SURF (Speeded Up Robust Features) and ORB (Oriented FAST and Rotated BRIEF) feature tracking techniques. In order to use satellite images from two different sensors, spatial and radiometric resolution were adjusted during pre-processing steps, and then the feature tracking techniques were applied to the pre-processed images. The matched features extracted from the SIFT showed even distribution across whole image, however the matched features extracted from the SURF showed condensed distribution of features around boundary between ice and ocean, and this regionally biased distribution became more prominent in the matched features extracted from the ORB. The processing time of the feature tracking was decreased in order of SIFT, SURF and ORB techniques. Although number of the matched features from the ORB was decreased as 59.8% compared with the result from the SIFT, the processing time was decreased as 8.7% compared with the result from the SIFT, therefore the ORB technique is more suitable for fast measurement of sea ice motion.

A Comparative Analysis of Sea Ice Material Properties in the Amundsen Sea, Antarctica (남극 아문젠해에서 계측된 해빙의 재료특성 비교 분석)

  • Choi, Kyungsik;Kim, Hyun Soo;Ha, Jung Seok;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.3
    • /
    • pp.254-258
    • /
    • 2014
  • Field trial in ice-covered sea is one of the most important tasks in the design of icebreaking ships. To correctly estimate ice load and ice resistance on ship's hull, It is essential to understand the material properties of sea ice during ice field trials and to perform the proper experimental procedure by gathering sea ice data. A measurement of sea ice properties was conducted during February and March of 2012 with the Korean Icebreaking research vessel "ARAON" in the Amundsen Sea, Antarctica. This paper describes a test procedure to obtain sea ice data which provide basic information to estimate ice loads and icebreaking performance of the ship. The data gathered from sea ice field trials during the 2012 Antarctic voyage of the ARAON includes ice temperature/salinity/density and the compressive/flexural strength of sea ice. This paper analyses the gathered Antarctic sea ice material properties comparing with the previous data obtained during ARAON's Arctic and Antarctic voyages in 2010.

Performance Comparison of Matching Cost Functions for High-Quality Sea-Ice Surface Model Generation (고품질 해빙표면모델 생성을 위한 정합비용함수의 성능 비교 분석)

  • Kim, Jae-In;Kim, Hyun-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1251-1260
    • /
    • 2018
  • High-quality sea-ice surface models generated from aerial images can be used effectively as field data for developing satellite-based remote sensing methods but also as analysis data for understanding geometric variations of Arctic sea-ice. However, the lack of texture information on sea-ice surfaces can reduce the accuracy of image matching. In this paper, we analyze the performance of matching cost functions for homogeneous sea-ice surfaces as a part of high-quality sea-ice surface model generation. The matching cost functions include sum of squared differences (SSD), normalized cross-correlation (NCC), and zero-mean normalized cross-correlation (ZNCC) in image domain and phase correlation (PC), orientation correlation (OC), and gradient correlation (GC) in frequency domain. In order to analyze the matching performance for texture changes clearly and objectively, a new evaluation methodology based on the principle of object-space matching technique was introduced. Experimental results showed that it is possible to secure reliability and accuracy of image matching only when optimal search windows are variably applied to each matching point in textureless regions such as sea-ice surfaces. Among the matching cost functions, NCC and ZNCC showed the best performance for texture changes.