• Title/Summary/Keyword: Arctic sea ice

Search Result 133, Processing Time 0.023 seconds

Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

  • Lee, Seongsuk;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.305-311
    • /
    • 2016
  • The spatial size and variation of Arctic sea ice play an important role in Earth's climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP) F13 Special Sensor Microwave/Imagers (SSMI) and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS) sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA).

Status of Korean Research Activity on Arctic Sea Ice Monitoring using KOMPSAT-series Satellite

  • Kim, Hyun-cheol;Chae, Tae-Byeong
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.329-339
    • /
    • 2019
  • Arctic warming is a global issue. The sea ice in the Arctic plays a crucial role in the climate system. We thought that a recent abnormality in many countries in the northern hemisphere could be related to the effects of shrinking sea ice in the Arctic. Many research groups monitor sea ice in the Arctic for climate research. Satellite remote sensing is an integral part of Arctic sea ice research due to the Arctic's large size, making it difficult to observe with general research equipment, and its extreme environment that is difficult for humans to access. Along with monitoring recent weather changes, Korea scientists are conducting polar remote sensing using a Korean satellite series to actively cope with environmental changes in the Arctic. The Korean satellite series is known as KOMPSAT (Korea Multi-Purpose Satellite, Korean name is Arirang) series, and it carries optical and imaging radar. Since the organization of the Satellite Remote Sensing and Cryosphere Information Center in Korea in 2016, Korean research on and monitoring of Arctic sea ice has accelerated rapidly. Moreover, a community of researchers studying Arctic sea ice by satellite remote sensing increased in Korea. In this article, we review advances in Korea's remote sensing research for the polar cryosphere over the last several years. In addition to satellite remote sensing, interdisciplinary studies are needed to resolve the current limitations on research on climate change.

Dynamic-Thermodynamic Sea Ice Model: Application to Climate Study and Navigation

  • Makshtas, Alexander;Shoutilin, Serger V.;Marchenko, Alexey V.;Bekryaev, Roman V.
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.2
    • /
    • pp.20-28
    • /
    • 2004
  • A dynamic-thermodynamic sea ice model with 50-km spatial and 24-hour temporal resolution is used to investigate the spatial and long-term temporal variability of the sea ice cover the Arctic Basin. The model satisfactorily reproduces the averaged main characteristics of the sea ice and the sea ice extent in the Arctic Basin and its decrease in early 1990th. At times model allows to suppose partial recovery of sea ice cover in the last years of twenty century. The employment of explicit form for description of ridging gives opportunity to assume that the observed thinning is the result of reduction the intensity of ridging processes and to estimate long-term variability of probability the ridge free navigation in the different parts of the Arctic Ocean including the North Sea Route area.

Recent Trends of Sea Ice in the Arctic Ocean and Northern Sea Route as of July 2017 (북극해와 북해에서의 해빙 관련 최신 동향(2017년 7월까지))

  • Harun-Al-Rashid, Ahmed;Yang, Chan-Su
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.3
    • /
    • pp.133-137
    • /
    • 2017
  • The Arctic region remains surrounded by sea ice during most of the period of the year. In the Arctic Ocean the Northern Sea Route (NSR) has been used as an important route for shipping. The arctic sea ice is decreasing since 1979; hence needs to be monitored. In this research work sea ice concentration in the recent years and sea ice concentration anomalies of few months with long term sea ice concentration are studied. The climatology of long term ice concentration data from various satellites, and the recent sea ice concentration data from Advanced Microwave Scanning Radiometer 2 (AMSR2) were used. The results show that sea ice concentration and sea ice extent in the Arctic region decreased by around 5% from 2015 to 2016, but in 2017 increased again in smaller amount in some areas like around Novaya Zemlya, and parts of the sea in between Greenland and Longyearbyen, and around Banks Island. The percentages of sea ice area in NSR for July 7 in 2015 to 2017 were 37%, 39% and 33%, respectively, indicating a large area (around ten thousand $km^2$) become ice free in 2017 compared to the previous year.

Material Properties of Arctic Sea Ice during 2010 Arctic Voyage of Icebreaking Research Vessel ARAON: Part 2 - Compressive Strength, Flexural Strength, and Crystal Structures (쇄빙연구선 ARAON호를 이용한 북극해 해빙의 재료특성 (2) - 해빙의 압축강도, 굽힘강도 및 결정구조 -)

  • Kim, Dae-Hwan;Park, Young-Jin;Choi, Kyung-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • To correctly estimate ice load and ice resistance for a ship's hull, it is essential to understand the material properties of sea ice during ice field trials and to use the proper experimental procedure for gathering ice strength data. The first Korean-made icebreaking research vessel (IBRV), ARAON, had her second sea ice trial in the Arctic Ocean during July and August of 2010. This paper describes the test procedures used to properly obtain sea ice strength data, which provides the basic information on the ship's performance in an ice-covered sea and can be used to estimate the correct ice load and ice resistance on the IBRV ARAON. The data gathered from three sea ice field trials during the Arctic voyage of the ARAON includes the ice compressive strength, flexural strength, and failure strain of sea ice. This paper analyzes the gathered sea ice data in comparison with data from the first voyage of the ARAON during her Antarctic Sea ice trial in January 2010.

Sensitivity Study of Simulated Sea-Ice Concentration and Thickness Using a Global Sea-Ice Model (CICE) (전구 해빙모델(CICE)을 이용한 해빙 농도와 해빙 두께 민감도 비교)

  • Lee, Su-Bong;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.555-563
    • /
    • 2014
  • The impacts of dynamic and thermodynamic schemes used in the Community Ice CodE (CICE), the Los Alamos sea ice model, on sea ice concentration, extent and thickness over the Arctic and Antarctic regions are evaluated. Using the six dynamic and thermodynamic schemes such as sea ice strength scheme, conductivity scheme, albedo type, advection scheme, shortwave radiation method, and sea ice thickness distribution approximation, the sensitivity experiments are conducted. It is compared with a control experiment, which is based on the fixed atmospheric and oceanic forcing. For sea ice concentration and extent, it is found that there are remarkable differences between each sensitivity experiment and the control run over the Arctic and Antarctic especially in summer. In contrast, there are little seasonal variations between the experiments for sea ice thickness. In summer, the change of the albedo type has the biggest influence on the Arctic sea ice concentration, and the Antarctic sea ice concentration has a greater sensitivity to not only the albedo type but also advection scheme. The Arctic sea ice thickness is significantly affected by the albedo type and shortwave radiation method, while the Antarctic sea ice thickness is more sensitive to sea ice strength scheme and advection scheme.

ENHANCED ARCTIC PRIMARY PRODUCTIVITY FOLLOWING SEA ICE RAPID DECLINE

  • Comiso, Josefino C.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.1019-1022
    • /
    • 2006
  • Satellite sea ice data from 1978 to the present reveal that the perennial ice (or ice that survives the summer) has been rapidly declining at almost 10% per decade. Warming due to increases in greenhouse gases in the atmosphere is now also being reflected in winter with drastic reductions in the maximum extent observed in 2005 and 2006. The retreat of the perennial ice also exposes more open water and has revealed an asymmetric distribution of chlorophyll a pigment concentration in the Arctic basin. Phytoplankton blooms are most dominant at high latitudes, partly on account of sea ice, but in the Arctic basin, it appears that pigment concentrations in the Eastern (Laptev Sea) Region are on the average three times higher than those in the Western (Beaufort Sea) Region. Such asymmetry suggests that despite favorable conditions provided by the melt of sea ice, there are other factors that affects the productivity of the region. The asymmetry is likely associated with much wider shelf areas in the East than in the West, with sea ice processes that inhibits the availability of nutrients near the surface in deep water regions, and river run-off that affects nutrient availability. The primary productivity in the pan-Arctic region have been estimated using the pigment concentrations and PAR derived from SeaWiFS data and the results show large seasonal as well as interannual variability during the 1998 to 2005 period. The data points towards increasing productivity for later years but with only 9 years of data it is too early to tell the overall effect of the sea ice retreat.

  • PDF

Research on Analytical Technique for Satellite Observstion of the Arctic Sea Ice (극지 해빙 위성관측을 위한 분석 기술 개발)

  • Kim, Hyun-cheol;Han, Hyangsun;Hyun, Chang-Uk;Chi, Junhwa;Son, Young-sun;Lee, Sungjae
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1283-1298
    • /
    • 2018
  • KOPRI(Korea Polar Research Institute) have researhed Arctic sea ice by using satellite remote sensing data since 2017 as a mission of KOPRI. The title of the reseach is "Development of Satellite Observation and Analysis for Arctc sea-ice". This project has three major aims; 1) development of prototype satellite data archive/manage system for Arctic sea ice monitoring, 2) development of sea ice remote sensing data processing and analysis technique, and 3) development of international satellite observing network for Arcitc. This reseach will give us that 1) deveolpment of sea ice observing system for northern sea route, 2) development of optimal remote sensing data processing technique for sea ice and selected satelite sensors, 3) development of international satellite onbservation network. I hope that this letter of introducton KOPRI satellite program for Arctic will help to understand Arctic remote sensing and will introduce you to step into the Arctic remote sensing, which Iis like a blue ocean of remote sensing.

Strength Characteristics of Arctic Sea Ice from Ice Field Tests of the Icebreaking Research Vessel ARAON (쇄빙연구선 ARAON호의 북극해 실선시험을 통한 해빙의 재료강도 특성에 관한 고찰)

  • Choi, Kyung-Sik;Lee, Chun-Ju;Rim, Chae-Whan;Kim, Hyun-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.254-259
    • /
    • 2011
  • The first Korean-made icebreaking research vessel "ARAON" had her second sea ice trial in the Arctic Ocean in Aug. 2010 after her first voyage to Antarctic Ocean in Jan. 2010 to gather various material and strength characteristics of sea ice. This is a detail report of ARAON 2010 summer Arctic voyage and this paper describes a standard test procedure to obtain proper sea ice data which provide basic information to estimate ice loads and icebreaking performance of the ship. The data gathered from sea ice in the Chukchi Sea and Beaufort Sea during the Arctic voyage of the ARAON includes ice temperature/salinity and the compressive/flexural strength of sea ice. This paper analyses the gathered sea ice data in comparison with data from the first voyage of the ARAON during her Antarctic Sea ice trial.

Material Properties of Arctic Sea Ice during 2010 Arctic Voyage of Icebreaking Research Vessel ARAON: Part 1 - Sea Ice Thickness, Temperature, Salinity, and Density - (쇄빙연구선 ARAON호를 이용한 북극해 해빙의 재료특성 (1) - 해빙의 두께, 온도, 염도, 밀도 계측 -)

  • Park, Young-Jin;Kim, Dae-Hwan;Choi, Kyung-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.55-61
    • /
    • 2011
  • A field trial in an ice-covered sea is one of the most important tasks in the design of icebreaking ships and offshore structures. To correctly estimate the ice load and ice resistance of a ship's hull, it is essential to understand the material properties of sea ice during ice field trials and to use the proper experimental procedure for gathering effective ice data. The first Korean-made icebreaking research vessel, "ARAON," had her second sea ice trial in the Arctic Ocean during the summer season of 2010. This paper describes the test procedures used to obtain proper sea ice data, which provides the basic information for the ship's performance in an ice-covered sea and is used to estimate the correct ice load and ice resistance of the IBRV ARAON. The data gathered from the sea ice in the Chukchi Sea and Beaufort Sea during the Arctic voyage of the ARAON includes the temperature, density, and salinity of the sea ice, which was believed to be from two-year old ice floes. This paper analyses the gathered sea ice data in comparison with data from the first voyage of the ARAON during her Antarctic Sea ice trial.