• Title/Summary/Keyword: Arctic Warming

Search Result 73, Processing Time 0.052 seconds

Annual Variation and Trends of the Arctic Tropopause Pressure (북극지역 대류권계면 기압의 연변화와 변화경향)

  • Choi, Woo Kap;Kim, Hyesil
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.355-366
    • /
    • 2010
  • The tropopause pressure in the Arctic region is calculated by the conventional thermal and dynamical methods using 30-year reanalysis data. The tropopause pressures determined thermally and dynamically both show semiannual cycles with one peak in April and May, and another in October, contrary to the tropopause temperatures. Although tropopause levels are higher both in January and July, the level of the tropopause in January seems to be associated with the stratospheric temperatures while that of July seems to be associated with the tropospheric temperatures. During the 30-year period the most significant trend appears in April, and it is shown that the altitude of the Arctic tropopause has been rising. Although a potential reason for this trend is stratospheric cooling due to ozone depletion, significant tropospheric warming in April is considered to be another reason.

Study of Information System for the Environmental Impact Assessment (EIA) of the Arctic Development Project (북극권 자원 개발사업의 환경영향평가(EIA)를 위한 정보 구축 방안)

  • Kim, Sewon;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.53-61
    • /
    • 2019
  • It is well known there are a lot of undeveloped energy resource in the Arctic circle. As global warming enables the use of Arctic sea routes, the interest in Arctic resource development is increasing. Recently, polar neighbors and developed countries are actively promoting construction project in Arctic circle. However, the issue of environmental pollution caused by Arctic resource development has been raised. Today, environmental issues have a significant impact on the success of the project as well as on the costs of Arctic development projects. Therefore, it is necessary to secure a technology related to energy resource development and transportation for the Arctic resource project. In addition, the establishment of strategy for environmental impact assessment (EIA) is important. This paper shows the characteristics and procedures of EIA for developing Arctic resources, and reviews how to construct the systematically management of the necessary information. This system consists of a database required for environmental impact assessment and its application. The system is expected to be utilized for strategic development projects in the Arctic.

Economic Valuation of the Biodiversity-Related Changes in Ecosystem Services of the Arctic Caused by Climate Change (북극의 기후변화로 인한 생태계변화의 경제적 가치추정)

  • Kang, Heechan;Kim, Hyo-Sun
    • Environmental and Resource Economics Review
    • /
    • v.25 no.2
    • /
    • pp.321-349
    • /
    • 2016
  • According to the recent observation by NOAA(US National Oceanic and Atmospheric Administration), 2015 is the warmest year based on global average temperature since 1880. The air temperatures in the Arctic have been rising at almost twice the global average and the extent and thickness of sea ice in the Arctic have declined. And the warming process in the Arctic is accelerating rapidly. These impacts of drastic change in sea ice caused by climate change in the Arctic threaten the eco-system service and biodiversity in the Arctic. This study intends to estimate the economic value on changes in eco-system services and biodiversity of the Arctic caused by climate change. The result of the valuation indicates that the total benefit from improvement of ecosystem in the Arctic ranges from 318.6 billion won to 715.9 billion won per annum. Replication scenarios can be explored into two broad categories in future studies: scenarios in consideration of conflicts of different stakeholders and scenarios based on wider or narrower definition of biodiversity in the Arctic.

Global Warming and Alpine Vegetation

  • Kong, Woo-seok
    • The Korean Journal of Ecology
    • /
    • v.22 no.6
    • /
    • pp.363-369
    • /
    • 1999
  • Reconstruction of the past vegetational changes of Korea in connection with climate changes enables to understand the impacts of past and future global warming on alpine vegetation. Despite the early appearance of the cold-tolerant vegetation since the Mesozoic Era. the occurrence of warmth-tolerant vegetation during the Oligocene and Miocene implies that most of alpine and subalpine vegetations have been confined to the alpine and subalpine belts of northern Korean Peninsula. The presence of cold-episodes during the Pleistocene. however. might have caused a general southward and downslope expansions of cold-tolerant alpine and subalpine vegetation. But the climatic warming trend during the Holocene or post-glacial period eventually has isolated cold-tolerant alpine and subalpine vegetation mainly in the northern Korea. but also on scattered high mountains in the southern Korea. The presence of numerous arctic-alpine and alpine plants on the alpine and subalpine belts is mainly due to their relative degree of sensitivity to high summer temperatures. Global warming would cause important changes in species composition and altitudinal distributional pattern. The altitudinal migration of temperate vegetation upward caused by climatic warming would eventually devastate alpine plants.

  • PDF

Influence of Spring Warming in the Arctic-East Asia Region on the Arctic Oscillation and Dust Days in Korea Attributed to Dust Storms (북극-동아시아 지역의 봄철 온난화가 북극 진동-한국의 황사 사례일의 종관 기상에 미치는 영향 분석)

  • Ji-Sun Kim;Jae-Hee Cho;Hak-Sung Kim
    • Journal of the Korean earth science society
    • /
    • v.45 no.2
    • /
    • pp.121-135
    • /
    • 2024
  • This study examined the influence of near-surface atmospheric warming in the Arctic-East Asia region during spring (March-May) from 1991 to 2020 on the synoptic-scale meteorology of dust storm-induced dust days in Seoul, Korea, in response to the Arctic Oscillation. Increased springtime warming in the Arctic-East Asia region correlated with a reduction of six days in the occurrence of dust storm-induced dust days in Seoul, Korea, along with a decline in the intensity of these days by -1.6 ㎍ m-3yr-1 in PM10 mass concentration. The declining number of dust storm-induced dust days in Korea during the 2010s was the result of synoptic-scale meteorological analysis, which showed increased high-pressure activity as indicated by the negative potential vorticity unit. Moreover, a distinct pattern emerged in the distribution of dust storm-induced dust days in Korea based on the Arctic Oscillation Index (AOI), showing an increase in negative AOI and a decrease in positive AOI. Although the northward shift of the polar jet weakened the southerly low-pressure system activity over Mongolia and northern China, a reinforced high-pressure system formed over the Chinese continent during dust-storm-induced dust days with a negative AOI. This resulted in both a decrease in the frequency of dust-storm-induced dust days and reduction in wind speeds, facilitating their transport from source regions to Korea. Conversely, on days with positive AOIs, an extensive warm and stagnant high-pressure system dominated mainland China, accompanied by further cooling of the northern segment of the polar jet. A notable decline in wind speed in the lower troposphere across the Mongolia-northern China-Korea region diminished the occurrence of dust storm-induced dust days and also weakened their long-range transport.

Investigation and Analysis of Climate Change Countermeasures for Resource Development Projects in the Arctic Circle (북극권 자원 개발 사업을 위한 기후변화 대응 방안 조사 분석)

  • Kim, Sewon;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.73-84
    • /
    • 2021
  • Recently, interest in environmental issues is increasing worldwide due to abnormal climate phenomena caused by global warming. Global efforts are continuing to actively respond to climate change, but the dependence on fossil fuels is still high. In particular, a huge amount of fossil fuels and mineral resources are buried in the Arctic Circle, so development and construction projects are being actively pursued. Participation and cooperation in the development of Arctic resources (oil and gas resources) is one of the alternatives to domestic energy supply. Resource development in the Arctic Circle requires close review(Poor development environment and technical limitations due to extreme climate, environmental problems due to resource development, social impact, etc.) in advance compared to general resource development. In this pater, the laws and guidelines related to climate change to be considered were reviewed. when developing Arctic resources. In addition, the countermeasures against climate change applied in large-scale resource development projects in the Arctic were reviewed. It is expected that the results of the research and analysis of this study will be used to establish strategies to respond to new risk factors that influence the successful promotion and operation of the Arctic region resource development project.

ENHANCED ARCTIC PRIMARY PRODUCTIVITY FOLLOWING SEA ICE RAPID DECLINE

  • Comiso, Josefino C.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.1019-1022
    • /
    • 2006
  • Satellite sea ice data from 1978 to the present reveal that the perennial ice (or ice that survives the summer) has been rapidly declining at almost 10% per decade. Warming due to increases in greenhouse gases in the atmosphere is now also being reflected in winter with drastic reductions in the maximum extent observed in 2005 and 2006. The retreat of the perennial ice also exposes more open water and has revealed an asymmetric distribution of chlorophyll a pigment concentration in the Arctic basin. Phytoplankton blooms are most dominant at high latitudes, partly on account of sea ice, but in the Arctic basin, it appears that pigment concentrations in the Eastern (Laptev Sea) Region are on the average three times higher than those in the Western (Beaufort Sea) Region. Such asymmetry suggests that despite favorable conditions provided by the melt of sea ice, there are other factors that affects the productivity of the region. The asymmetry is likely associated with much wider shelf areas in the East than in the West, with sea ice processes that inhibits the availability of nutrients near the surface in deep water regions, and river run-off that affects nutrient availability. The primary productivity in the pan-Arctic region have been estimated using the pigment concentrations and PAR derived from SeaWiFS data and the results show large seasonal as well as interannual variability during the 1998 to 2005 period. The data points towards increasing productivity for later years but with only 9 years of data it is too early to tell the overall effect of the sea ice retreat.

  • PDF

Ice Load Generation in Time Domain Based on Ice Load Spectrum for Arctic Offshore Structures (극지해양구조물 성능평가를 위한 스펙트럼 기반 시간역 빙하중 생성에 관한 연구)

  • Kim, Young-Shik;Kim, Jin-Ha;Kang, Kuk-Jin;Han, Solyoung;Kim, Jinwhan
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.411-418
    • /
    • 2018
  • This paper introduces a new method of ice load generation in the time domain for the station-keeping performance evaluation of Arctic offshore structures. This method is based on the ice load spectrum and mean ice load. Recently, there has been increasing interest in Arctic offshore technology for the exploration and exploitation of the Arctic region because of the better accessibility to the Arctic ocean provided by the global warming effect. It is essential to consider the ice load during the development of an Arctic offshore structure. In particular, when designing a station-keeping system for an Arctic offshore structure, a consideration of the ice load acting on the vessel in the time domain is essential to ensure its safety and security. Several methods have been developed to consider the ice load in the time domain. However, most of the developed methods are computationally heavy because they consider every ice floe in the sea ice field to calculate the ice load acting on the vessel. In this study, a new approach to generate the ice load in the time domain with computational efficiency was suggested, and its feasibility was examined. The ice load spectrum and mean ice load were acquired from a numerical analysis with GPU-event mechanics (GEM) software, and the ice load with the varying heading of a vessel was reconstructed to show the feasibility of the proposed method.

Estimation Method for Ice load of Managed Ice in an Oblique Condition (깨어진 해빙의 사항조건에서 빙 하중 추정법 연구)

  • Kim, Hyunsoo;Lee, Jae-bin
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.184-191
    • /
    • 2018
  • Recently, as sea ice in the Arctic has been decreasing due to global warming, it has become easier to develop oil and gas resources buried in the Arctic region. As a result, Russia, the United States, and other Arctic coastal states are increasingly interested in the development of oil and gas resources, and the demand for offshore structures to support Arctic sea resources development is expected to significantly increase. Since offshore structures operating in Arctic regions need to secure safety against various drifting ice conditions, the concept of an ice-strengthened design is introduced here, with a priority on calculation of ice load. Although research on the estimation of ice load has been carried out all over the world, most ice-load studies have been limited to estimating the ice load of the icebreaker in a non-oblique state. Meanwhile, in the case of Arctic offshore structures, although it is also necessary to estimate the ice load according to oblique angles, the overall research on this topic is insufficient. In this paper, we suggest algorithms for calculating the ice load of managed ice (pack ice, 100% concentration) in an oblique state, and discuss validity. The effect of oblique angle according to estimated ice load with various oblique angles was also analyzed, along with the impact of ship speed and ice thickness on ice load.

The Trends and Outlook of Technology Development for Oil and Gas in the Arctic (북극 석유·천연가스 자원 기술개발 현황 및 전망)

  • Lim, Jong-Se;Shin, Hyo-Jin;Kim, Ji-Su;Jin, Young-Keun
    • Ocean and Polar Research
    • /
    • v.36 no.3
    • /
    • pp.303-318
    • /
    • 2014
  • The rising global demand for energy resources may lead to greater interest in the Arctic region. Since it has various resources, such as oil and gas, and large potential as a strategic location in exploration and production (E&P), there is likely to occur island sovereignty issues between the five arctic costal states and other countries. While global warming has led to the opening of the Northeast Passage and the Northwest Passage, several obstacles may impede the development of this area such as the low temperature environment, infrastructure problems in a limited area, flow assurance, environmental regulations, etc. To overcome these problems, various techniques have been applied in the exploration, development, production, transportation, and environment fields and it seems to be made technical development in extreme environment. In this study, the E&P status of representative states and development technologies in the Arctic region have been summarized with regard to carrying out E&P related to drilling, development, production, and operation in oil and gas fields. Furthermore, environmental factors have been taken into account to enhance progress with regard to E&P and ensure sustainable development in the Arctic. On that basis, it will be possible to secure oil and gas field development, production technology and R&D infrastructure in the Arctic.