• Title/Summary/Keyword: Arcing Energy

Search Result 37, Processing Time 0.027 seconds

Empirical Modeling on the Breaking Characteristics of Power Current Limited Fuse (전력용 백업퓨우즈 차단특성 모델링)

  • Lee Sei-Hyun;Lee Bvung-Sung;Han Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.9
    • /
    • pp.391-396
    • /
    • 2005
  • In this paper the modeling of interrupting characteristics of a high voltage current limiting fuse to be used in a power distribution system is introduced. In order to reduce the level of energy which can be absorbed by equipment during fault current flow, a high voltage current limiting fuse can generate a high voltage at the fuse terminals. Consequently it is necessary to model and analyze precisely the voltage and current variation during a CL fuse action. The characteristics of CL fuse operation modeled by electrical components have been performed with less than 6 [$\%$] errors. So the fuse designer or manufacturer can estimate the characteristics of CL fuse operation by using this modeling. The Electro Magnetic Transient Program (EMTP) is used to develop the modeling.

The Study Efficiency Characteristics of PV Inverter by Series Arc (아크발생에 따른 태양광 인버터의 효율 특성 연구)

  • Kim, Seung-Eul;Seo, H.U.;Kwon, W.S.;Lee, Y.J.;Han, D.H.;Ban, C.H.;Choe, G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.159-160
    • /
    • 2012
  • For renewable energy has been studied by many research. among them, non-pollution and infinite solar energy using solar power system is newly spotlighed. the DC output characteristic of the solar cell, connection to grid and using the inverter is essential to the process of converter DC to AC. in this paper, study the corresponding changes in the efficiency of the inverter and arcing occurs in the inverter, depending on the conditions and regulations in the UL-1699 series arc occurs.

  • PDF

Reignition system for synthetic short-circuit test (합성단락시험용 재점호장치)

  • Park, Seung-Jae;Kim, Maeng-Hyun;Kang, Young-Sig;Shin, Young-June;Koh, Heui-Sek
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1856-1858
    • /
    • 2000
  • This paper describes the principles of reignition system which has newly been developed and used as KERI's high power testing facilities. Synthetic short-circuit testing method is generally adopted to perform the short-circuit test of the ultra high-voltage circuit breakers, which consists of two separated sources such as the current source from short-circuit generator and the voltage source from charged energy in capacitor. And, in case of synthetic short-circuit test, it will be necessary to use the reignition system in order to extending the arcing time of the circuit breaker and provide the arc energy equivalent to the direct testing method.

  • PDF

An Implementation of Wireless Based Sensing System for Catenary Deicing (무선기반 전차선로의 해빙 감지시스템 구현)

  • Kim, Joo-Uk;Na, Kyung-Min;Park, Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.512-515
    • /
    • 2019
  • Overhead contact systems (OCS) consist of contact and messenger wires, in which the contact wire supplies electric energy to the railway vehicle by contacting a pantograph. However, this mechanical contact is interrupted during frosts or temperatures below $0^{\circ}C$ in the winter. In these conditions, railway vehicle accidents can occur during operation because of the low energy efficiency that results from the increase in the arcing between the contact wire and pantograph. Therefore, the detection of frost or freezing temperatures is necessary to maintain the stable operation of these trains. In this study, we proposed the development of a frost or freezing condition monitoring system on the OCSs that utilizes wireless communication.

A Study on Energy Recovery Circuit in Sputtering Plasma Power supply for arc Discharge Prevention (스퍼터용 플라즈마 전원장치의 아크방지를 위한 에너지 회생회로에 대한 연구)

  • Ban, Jung-Hyun;Han, Hee-Min;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.3
    • /
    • pp.116-121
    • /
    • 2012
  • Recently, in the field of renewable energy such as solar cells including the semiconductor and display industries, thin film deposition process is being diversified. Furthermore, to deal with trend of making high-quality and fast, the high-capacity and output plasma power supply which can control high density plasma is required. The biggest problem is arc discharge caused by using high voltage power supply. Thus, the key function of plasma power supply is to prevent arc discharge and there is a need to maintain the possible minimum arc energy. In DC sputtering power supply, on a periodic basis (-)voltage powering up is able to significantly reduce arcing, as well as arc discharge prevention, and maintaining uniform charge density. This conventional method for powering up (-)voltage requires heavy mutual inductance of the transformer to avoid distortion problem of the output voltage. This study is about energy recovery circuit for arc discharge prevention in sputtering plasma power supply. By using energy recovery circuit, it is possible to reduce the mutual inductance and size of the transformer dramatically, prevent distortion of the output voltage and has a stable output waveform. This work was proved through simulation and experimental study.

Selective Phase Transformation of Arsenopyrite by Microwave Heating and their Enhancement Au Recovery by Thiocyanate Solution (마이크로웨이브 가열에 의한 황비철석의 선택적 상변환과 티오시안산염 용액에 의한 Au 회수율 향상)

  • Han, Oh-Hyung;Kim, Bong-Ju;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.73-83
    • /
    • 2014
  • In order to investigate selective phase transformations and to determine the maximum Au leaching factors from microwave treated Au-bearing complex sulfides, a microscope, SEM-EDS analysis, and thiocyanate leaching tests were performed. When the Au-bearing complex sulfides were exposed to microwave heating, increasing the microwave exposure time increased temperature and decreased weight. Arsenopyrite was first selectively transformed to hematite, which formed a concentric rim structure. In this hematite, oxygen and carbon was detected and always showed high iron content and low arsenic content due to arcing and oxidation from microwave heating. The results of the leaching test using microwave treated sample showed that the maximum Au leaching parameters was reached with 0.5 g concentration thiocyanate, 2.0 M hydrochloric acid, 0.3 M copper sulfate and leaching temperature at$60^{\circ}C$. Under the maximum Au leaching conditions, 59% to 96.69% of Au was leached from the microwave treated samples, whereas only 24.53% to 92% of the Au was leached from the untreated samples.

A Review on the Deposition/Dissolution of Lithium Metal Anodes through Analyzing Overpotential Behaviors (과전압 거동 분석을 통한 리튬 금속 음극의 전착/탈리 현상 이해)

  • Han, Jiwon;Jin, Dahee;Kim, Suhwan;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Lithium metal is the most promising anode for next-generation lithium-ion batteries due to its lowest reduction potential (-3.04 V vs. SHE) and high specific capacity (3860 mAh/g). However, the dendritic formation under high charging current density remains one of main technical barriers to be used for commercial rechargeable batteries. To address these issues, tremendous research to suppress lithium dendrite formation have been conducted through new electrolyte formulation, robust protection layer, shape-controlled lithium metal, separator modification, etc. However, Li/Li symmetric cell test is always a starting or essential step to demonstrate better lithium dendrite formation behavior with lower overpotential and longer cycle life without careful analysis. Thus, this review summarizes overpotential behaviors of Li/Li symmetric cells along with theoretical explanations like initial peaking or later arcing. Also, we categorize various overpotential data depending on research approaches and discuss them based on peaking and arcing behaviors. Thus, this review will be very helpful for researchers in lithium metal to analyze their overpotential behaviors.

Development of DC Arc Generator to protect against Malfunctions and Fires caused by Arcing (아크 발생에 따른 고장 및 화재를 보호하기 위한 직류 아크 Generator 개발)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.123-128
    • /
    • 2021
  • As the spread of DC power distribution systems increases, the occurrence of failures and fire accidents are also increasing. In particular, the ESS fire accident, which is a component of the smart grid, and the fire accident of the solar power system, which is a direct current system, are caused by problems in the electrical connection between system components as the supply of new and renewable energy rapidly increases and old facilities increase. An arc that can cause a direct fire by releasing the induced light and heat has been pointed out as one of the causes of fire. Therefore, the problem of such an arc defect is that it is impossible to block an arc accident in advance with the existing overcurrent circuit breaker and earth leakage circuit breaker. In this paper, we intend to develop a test equipment that satisfies international standardization and to develop a DC arc generator to protect against failure and fire caused by arcing.

Comparison of Evaluation Methods of the Small Current Breaking Performance for $SF_{6}$ Gas Circuit Breakers

  • Song, Ki-Dong;Lee, Byeong-Yoon;Park, Kyong-Yop;Park, Jung-Hoo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.4
    • /
    • pp.129-136
    • /
    • 2001
  • In order to evaluate the dielectric recovery strength for GCBs, two equations have been usually utilized. One is the empirical formula obtained from a series of tests and the other is the theoretical formula obtained from the streamer theory. In this paper, both methods were applied to predict the small capacitive current interruption capability of model circuit breakers and were investigated in terms of the reliability by comparing the simulation results with test ones.

  • PDF

Investigation of the Compression-Decompression Process in a PASB Chamber with Gas Flow Simulation (가스유동해석을 통한 복합소호 아크챔버의 압축-팽창 과정 분석)

  • Lee, Jong-Chul;Kim, Woo-Young
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1362_1363
    • /
    • 2009
  • In this study, we predicted the thermal breakdown of high-voltage interrupter with the characteristics of thermal plasmas such as temperature, pressure and concentration of the ablated material by using a commercial CFD program. The results showed that the pressure build-up inside the chamber was proportional to the magnitude of arcing current because the quantities of heat energy and ablated mass also increase together with the current during the compression process. And during the decompression process, the reverse flow was not coincided with the magnitude of the applied current due to the compressibility of the gas through backflow channel. The present method is expected to be useful for the design of guideline and interruption capacity on the thermal breakdown of a PASB chamber.

  • PDF