• Title/Summary/Keyword: Architectural code

Search Result 341, Processing Time 0.029 seconds

Experimental Study on Seismic Retrofitting Methods for School Building using Aramid Strip (아라미드 스트립을 이용한 학교건축물의 내진성능 보강방안에 관한 실험적 연구)

  • Kim, Hye-Jin;Park, Tae-Won;Cho, Seung-Ho;Lee, Kyung-Koo;Roh, Young-Sook;Chung, Lan
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.100-106
    • /
    • 2010
  • Most of the school buildings were built before the seismic code was established. To consider the sunlight and ventilation to the partition walls are built about 1m height beside columns at typical school buildings. For the reason, columns which is consisted school building occur brittle failure shape by the reduced effective depth. In this study, experimental test for retrofitting effect by Aramid Fiber Reinforced Polymers(AFRP) strips on masonry infilled reinforced concrete(RC) frames is performed. The test results were to ensured enough time to evacuate due to the enhancement of ductility and strength of school buildings to withstand earthquakes using AFRP strips.

An Experimental Research on the Room Acoustical Environment of the Elementary School Classrooms (초등학교 교실의 음환경 평가에 관한 실험적 연구)

  • Haan, Chan-Hoon;Moon, Kyu-Chun
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.11 no.1
    • /
    • pp.5-14
    • /
    • 2004
  • Since 1990s in Korea, elementary school classrooms have been designed toward open education system in pursuit of variety of educational purpose. Also, the architectural designs of schools have been acomplished for individual school not based on the standard design code. The present paper aims to investigate the acoustic environment of existing classrooms and to compare the sound insulation capacity between the ordinary classrooms and the newly built classrooms for open education. The current acoustical situation of elementary classrooms was analyzed using field measurements and questionnaire survey. In order to this, Three elementary schools were selected which were built in 1978, 1996 and 2000 respectively. Room acoustical parameters including Reverberation time(RT), Definition(D50), Speech Intelligibility(RASTI), Transmission loss(TL) and STC were measured in a classroom in each elementary school classroom. Each measurement was undertaken with the windows and doors being open or closed. As the result, it was found that the transmission loss between rooms in open classrooms is, $5{\sim}6dB$ in average, inferior than the ordinary classrooms. The RASTI of 0.70 was measured in newly built classrooms which is better than old classrooms(0.70) and open classrooms(0.73). This was shown as same in the speech definition measurements. This results from the condition of sealing and airtightness of classrooms and floor materials. The results denote that open classrooms have poor acoustic condition in sound insulation and speech intelligibility.

An investigation on plan geometries of RC buildings: with or without projections in plan

  • Inan, Tugba;Korkmaz, Koray;Cagatay, Ismail H.
    • Computers and Concrete
    • /
    • v.9 no.6
    • /
    • pp.439-455
    • /
    • 2012
  • The interaction of plan geometry and structural configuration, a determinative factor in the earthquake behavior of buildings, has become a serious issue in the building industry in Turkey due to the poor seismic performance of R/C buildings during the latest earthquake. Consequently, designing new buildings without structural irregularities against earthquake loads is proving to be more significant. This study focuses on the effects of plan geometries on earthquake performances of buildings. In that respect, structural irregularities in the plan are investigated in detail based on the Turkish Earthquake Code (TEC 2007). The study is based on five main parametric models and a total of 40 sub-models that are grouped according to their plan geometries with excessive projections such as L-shaped, H-shaped, T-shaped and U-shaped models. In addition to these, a square model without any projections is also generated. All models are designed to have the same storey gross area but with different number of storeys. Changes in the earthquake behavior of buildings were evaluated according to the number of storeys, the projection ratios and the symmetry conditions of each model. The analysis of each structural irregularity resulted in many findings, which were then assessed. The study demonstrates that the square model delivers the best earthquake performance owing to its regular plan geometry.

Computational modeling of buried blast-induced ground motion and ground subsidence

  • Zhang, Zhi-Chao;Liu, Han-Long;Pak, Ronald Y.S.;Chen, Yu-Min
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.613-631
    • /
    • 2014
  • To complement the method of field-scale seismic ground motion simulations by buried blast techniques, the application and evaluation of the capability of a numerical modeling platform to simulate buried explosion-induced ground motion at a real soil site is presented in this paper. Upon a layout of the experimental setup at a level site wherein multiple charges that were buried over a large-diameter circle and detonated in a planned sequence, the formulation of a numerical model of the soil and the explosives using the finite element code LS-DYNA is developed for the evaluation of the resulting ground motion and surface subsidence. With a compact elastoplastic cap model calibrated for the loess soils on the basis of the site and laboratory test program, numerical solutions are obtained by explicit time integration for various dynamic aspects and their relation with the field blast experiment. Quantitative comparison of the computed ground acceleration time histories at different locations and induced spatial subsidence on the surface afterwards is given for further engineering insights in regard to the capabilities and limitations of both the numerical and experimental approaches.

Evaluation of Response Modification Factor of Steel Special Resisting Frame Building Before and After Retrofitted with Buckling Restrained Brace (비좌굴가새의 보강 전과 후의 철골 특수모멘트저항골조 건물의 R계수 평가)

  • Shin, Jiuk;Lee, Kihak;Jo, Yeong Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • This research presents that seismic performance of steel moment resisting frame building designed by past provision(UBC, Uniform Building Code) before and after retrofitted with BRB (Buckling-Restrained Brace) was evaluated using response modification factor (R-factor). In addition, the seismic performance of the retrofitted past building was compared with that specified in current provision. The past building considered two different connections: bilinear connection, which was used by structural engineer for building design, and brittle connection observed in past earthquakes. The nonlinear pushover analysis and time history analysis were performed for the analytical models considered in this study. The R-factor was calculated based on the analytical results. When comparing the R-factor of the current provision with the calculated R-factor, the results were different due to the hysteresis characteristics of the connection types. After retrofitted with BRBs, the past buildings with the bilinear connection were satisfied with the seismic performance of the current provision. However, the past buildings with the brittle connection was significantly different with the R-factor of the current provision.

Strain-based seismic failure evaluation of coupled dam-reservoir-foundation system

  • Hariri-Ardebili, M.A.;Mirzabozorg, H.;Ghasemi, A.
    • Coupled systems mechanics
    • /
    • v.2 no.1
    • /
    • pp.85-110
    • /
    • 2013
  • Generally, mass concrete structural behavior is governed by the strain components. However, relevant guidelines in dam engineering evaluate the structural behavior of concrete dams using stress-based criteria. In the present study, strain-based criteria are proposed for the first time in a professional manner and their applicability in seismic failure evaluation of an arch dam are investigated. Numerical model of the dam is provided using NSAD-DRI finite element code and the foundation is modeled to be massed using infinite elements at its far-end boundaries. The coupled dam-reservoir-foundation system is solved in Lagrangian-Eulerian domain using Newmark-${\beta}$ time integration method. Seismic performance of the dam is investigated using parameters such as the demand-capacity ratio, the cumulative inelastic duration and the extension of the overstressed/overstrained areas. Real crack profile of the dam based on the damage mechanics approach is compared with those obtained from stress-based and strain-based approaches. It is found that using stress-based criteria leads to conservative results for arch action while seismic safety evaluation using the proposed strain-based criteria leads to conservative cantilever action.

Application of meta-model based parameter identification of a seismically retrofitted reinforced concrete building

  • Yu, Eunjong
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.441-449
    • /
    • 2018
  • FE models for complex or large-scaled structures that need detailed modeling of structural components are usually constructed using commercial analysis softwares. Updating of such FE model by conventional sensitivity-based methods is difficult since repeated computation for perturbed parameters and manual calculations are needed to obtain sensitivity matrix in each iteration. In this study, an FE model updating procedure avoiding such difficulties by using response surface (RS) method and a Pareto-based multiobjective optimization (MOO) was formulated and applied to FE models constructed with a commercial analysis package. The test building is a low-rise reinforced concrete building that has been seismically retrofitted. Dynamic properties of the building were extracted from vibration tests performed before and after the seismic retrofits, respectively. The elastic modulus of concrete and masonry, and spring constants for the expansion joint were updated. Two RS functions representing the errors in the natural frequencies and mode shape, respectively, were obtained and used as the objective functions for MOO. Among the Pareto solutions, the best compromise solution was determined using the TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) procedure. A similar task was performed for retrofitted building by taking the updating parameters as the stiffness of modified or added members. Obtained parameters of the existing building were reasonably comparable with the current code provisions. However, the stiffness of added concrete shear walls and steel section jacketed members were considerably lower than expectation. Such low values are seemingly because the bond between new and existing concrete was not as good as the monolithically casted members, even though they were connected by the anchoring bars.

An Estimation Model of Historical Cost Using BIM Library for Road Project (도로분야 BIM 라이브러리를 활용한 실적공사비 산정모델 구축)

  • Moon, HyounSeok;Ju, KiBeom
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.4
    • /
    • pp.431-442
    • /
    • 2015
  • Currently, a BIM-based quantity takeoff (QTO) system is mainly focused on architectural projects. To perform this, diverse quantity takeoff methods such as an object-based automatic quantity takeoff, manual quantity and base functions of calculation have widely been utilizing. However, since BIM library for road projects includes structural elements associated with alignment, it is necessary to establish cost estimation system interlocked with historical cost using 3D library by each unit length. Accordingly, the aim of this study is to develop cost estimation model with using a historical cost approach so that it can be utilized in construction planning based on the BIM library for road projects. For this, based on the BIM library for road, the standardized quantity is estimated, and a process for calculating historical cost and a verification model with a 5D simulation was developed by mapping a WBS code with each BIM library object. This can be applied during the approximate cost estimation process in a project planning and an initial design phase for road projects. Besides, it is expected that these results will be utilized in constructing an optimal historical cost estimation process for project libraries.

Shape Optimization of Internally Finned Tube with Helix Angle (나선형 핀이 내부에 부착된 관의 형상최적화)

  • Kim, Yang-Hyun;Ha, Ok-Nam;Lee, Ju-Hee;Park, Kyoung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.500-511
    • /
    • 2007
  • The Optimal solutions of the design variables in internally finned tubes have been obtained for three-dimensional periodically fully developed turbulent flow and heat transfer. For a trapezoidal fin profile, performances of the heat exchanger are determined by considering the heat transfer rate and pressure drop, simultaneously, that are interdependent quantities. Therefore, Pareto frontier sets of a heat exchanger can be acquired by integrating CFD and a multi-objective optimization technique. The optimal values of fin widths $(d_1,\;d_2)$, fin height(h) and helix angle$(\gamma)$ are numerical1y obtained by minimizing the pressure loss and maximizing the heat transfer rate within ranges of $d_1=0.5\sim1.5mm$, $d_2=0.5\sim1.5mm$, $h=0.5\sim1.5mm$, and $\gamma=0\sim20^{\circ}$. For this, a general CFD code and a global genetic algorithm(GA) are used. The Pareto sets of the optimal solutions can be acquired after $30^{th}$ generation.

Determination of lateral strength and ductility characteristics of existing mid-rise RC buildings in Turkey

  • Ucar, Taner;Merter, Onur;Duzgun, Mustafa
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.467-485
    • /
    • 2015
  • This paper presents a comprehensive work on determination of yield base shear coefficient and displacement ductility factor of three to eight story actual reinforced concrete buildings, instead of using generic frames. The building data is provided by a walkdown survey in different locations of the pilot areas. Very detailed three dimensional models of the selected buildings are generated by using the data provided in architectural and reinforcement projects. Capacity curves of the buildings are obtained from nonlinear static pushover analyses and each capacity curve is approximated with a bilinear curve. Characteristic points of capacity curve, the yield base shear capacity, the yield displacement and the ultimate displacement capacity, are determined. The calculated values of the yield base shear coefficients and the displacement ductility factors for directions into consideration are compared by those expected values given in different versions of Turkish Seismic Design Code. Although having sufficient lateral strength capacities, the deformation capacities of these typical mid-rise reinforced concrete buildings are found to be considerably low.