• Title/Summary/Keyword: Arching Effect

Search Result 139, Processing Time 0.023 seconds

The Case of Measurement for Shallow Soil Tunnel with Pre-Supported Nail Method (저토피 토사터널에 적용된 선지보 네일공법의 시공 및 계측사례)

  • Seo, Dong-Hyun;Lee, Seung-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.69-79
    • /
    • 2012
  • This pre-supported nail method is able to decrease ground displacements more than NATM because this method reinforces ground with grouted steels before tunnel excavation. Therefore this method has advantage of being able to increase the stability and workability. This study presents applicability of pre-supported nail method with case of site measurement for shallow tunnel composed with high groundwater level and unconsolidated soil, performs this research the mechanism of new supporting system is compared with the conventional existing supporting system in terms of soil reinforcement. NATM has characteristics that construction stage displacement of the apparent height difference is observed in the step of divided excavation processing. Otherwise it is analyzed that pre-supported nail method is not sensitive in the displacement problem of excavation processing in comparison to NATM. It is found that this method is very applicable in shallow depth tunnel such as portal area, tunnel in soil and weak zone without arching effect.

Shear Strength of Concrete Deep Beam Reinforced AFRP rebar (AFRP rebar로 보강된 콘크리트 깊은보의 전단강도)

  • Lee, Young-Hak;Kim, Min-Sook;Cho, Jang-Se;Kim, Hee-Cheul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • This study carried out a shear experiment on concrete deep beam reinforced AFRP to investigate the shear strength of deep beam. The test was conducted on 8 specimens, and the variables were shear span ratio, reinforcement ratio, effective depth, and rebar type. We compared shear strength using ACI 318-08 STM with proposed equations that considered arching action according to shear span ratio. As a result, it was found that shear strength of deep beam reinforced AFRP rebar presented higher shear strength than steel rebar. ACI STM's predictions are more accurate than other predicting equations, and thus this research proposed model versus effective compressive strength of the concrete strut that considered strut size effect based on test results. The predictions obtained using the proposed model are in better agreement than previous equations and codes.

Application of Piles to Landslides Control (말뚝을 사용한 산사태 억지공법)

  • 홍원표
    • Geotechnical Engineering
    • /
    • v.7 no.4
    • /
    • pp.75-88
    • /
    • 1991
  • A lot of landslides has occurred in rainy seasons beginning at June through September in Korea, where about 70 percent of the total area is mountaneous. Piles can be used as one of the most useful methods to stabilize such landslides. When a row of piles is installed in soil undergoing lateral movement such as landslides, the soil across the open space between the piles can be retained by the arching action of the soil. For the purpose to establish a reasonable design method for stabilizing piles, a method for stability analysis of the slope containing stabilizing piles is presented, using the theoretical equation of the lateral force acting on the piles in soil undergoing lateral movement. In particular, the theoretical equation is arranged by applying the coefcients of lateral force as a simple equation. And also the differential equations proposed in the previous studies for the pile-stability analysis are modified, assumming that the piles above the sliding surface shall be subjected to the lateral reaction from soil in proportion to the pile deflection. Finally, to investigate the effect of stabilizing piles against landslides, an existing landslide slope in Korea is adopted as an example.

  • PDF

Transformation of Load Transfer Soil Arch in Geosynthetics-Reinforced Piled Embankment: A Numerical Approach (성토지지말뚝공법의 아치형 응력전달구조 변화에 대한 수치해석적 분석)

  • Lee, Taehee;Lee, Su-Hyung;Lee, Il-Wha;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.6
    • /
    • pp.5-16
    • /
    • 2016
  • In the geosynthetics-reinforced piled embankment the effects of soft soil stiffness, friction angle of the fill material, tensile stiffness of geosynthetics, and height of the embankment on the load transfer soil arch measured by the critical height were numerically investigated. Results from parametric studies show that the magnitude of the soft soil stiffness is the most influencing factor on the critical height. The contour charts of the critical height with respect to the combination of the soft soil stiffness and other parameters were presented. The charts show that the critical height sensitively varies with the combination of the soft soil stiffness and the height of embankment. Under the sufficiently low stiffness of soft soil, the critical height sensitively varies with the friction angle of the fill material. Once the geosynthetic layer is placed, however, the magnitude of the tensile stiffness of the geosynthetic layer hardly influences the critical height of the soil arch.

Convergence-confinement method of a tunnel with the consideration of seepage forces (침투력을 고려한 터널의 내공변위 제어 미케니즘)

  • Lee, In-Mo;Yoo, Seung-Youl;Nam, Seok-Woo;Shin, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.3
    • /
    • pp.187-195
    • /
    • 2005
  • When a tunnel is excavated below groundwater table, the groundwater flow occurs towards the tunnel resulting in the seepage pressure. In this paper, the effect of groundwater flows on the behavior of shotcrete lining installed between ground-liner interfaces was studied considering permeability ratio between the ground and the shotcrete into account. Three-dimensional coupled finite element analysis was performed for this assessment. Seepage forces will seriously affect the shotcrete behavior since arching phenomena do not occur in seepage forces. A parametric study was conducted on the various tunnelling situations including interfacial properties between ground and shotcrete lining, the shape of tunnel cross-section and the thickness of liner, etc. Moreover, the convergence-confinement method (CCM) of a NATM tunnel considering seepage forces was proposed. The result showed that the more water tight is the shotcrete, the smaller is the convergence and the larger is the internal pressure. Therefore, the watertight fiber-reinforced shotcrete is found to be even more advantageous when used in under water tunnel.

  • PDF

Prediction of Ground Condition Changes Ahead of Tunnel Face Using Three-Dimensional Absolute Displacement Analysis (터널 3차원 절대변위 해석기법을 이용한 막장전방지반 예측)

  • Bang, Joon-Ho;Han, Il-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.2
    • /
    • pp.101-113
    • /
    • 2006
  • Arching effect occurs around the unsupported excavation surface near to tunnel face when a tunnel is excavated in a stable rock mass. If a weak fracture zone exists in front of tunnel face, a displacement occurs between tunnel face and weak fracture zone due to stress concentration. If three-dimensional absolute coordinates (longitudinal, transverse, vertical direction) is measured at tunnel face by geodetic method, the ground change in front of the tunnel face can be predicted by analysing three-dimensional absolute displacement. The purpose of this study is to verify the analysis method of three-dimensional absolute displacement by comparing the trend of displacement ratio at crown and sidewall of tunnel and the influence line/trend line of crown settlement compared with TSP results in the same section.

  • PDF

Ground Behavior around Tunnel Using Tunnel-shaped Trapdoor Model Test (터널형상의 Trapdoor 모형실험을 통한 지반 거동에 관한 연구)

  • Han, Young-Chul;Kim, Sang-Hwan;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.65-80
    • /
    • 2014
  • This study conducted Trapdoor tests with actual tunnel shape, investigated the mechanical behavior of ground and loosening load on tunnels, and evaluated the mechanism of progressive failure by numerical simulation. The loosening load sharply decreased initially, but it generally increased and reached the stabilized level exhibiting the arching effect, and loose sand showed relatively higher values than those of dense sand. The shear band started from the tunnel shoulder with $63^{\circ}$ (loose sand) to $69^{\circ}$ (dense sand), and gently curved inward to the ground surface. The widths of shear band formation above the tunnel showed a range from 1.8b to 1.9b (b=Tunnel width), which are similar to those values calculated from existing formular. The vertical height of this shear band for deep tunnel was turned out to be a bit lower than that from existing studies (3.0*Tunnel Height).

The Use of Piles to Cut Slopes Design in Cohesive Soils (억지말뚝을 이용한 점성토지반 절토사면의 설계)

  • 홍원표;한중근;송영석
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.157-170
    • /
    • 1999
  • A new design technique is presented to stabilize cut slopes in cohesive soils by use of piles. The design method can consider systematically factors such as the gradient and height of slope, the number and position of pile's rows, the interval and stiffness of piles, etc. The design method is established on the basis of the stability analysis of slope with rows of piles. The basic concept applied in the stability analysis is that the soil across the open space between piles can be retained by the arching action of the soil, when a row of piles is installed in soil undergoing lateral movement such as landslides. To obtain the whole stability of slope containing piles, two kinds of analyses for the pile-stability and the slope- stability must be performed simultaneously. An instrumentation system has been installed at a cut slope in cohesive soil, which has been designed according to the presented design process. The behavior of both the piles and the soil across the open space between piles is observed precisely. The result of instrumentation shows that the cut slope has been stabilized by the contribution of stabilizing effect of piles on the slope stability in cohesive soil.

  • PDF

Behavior of 2 Arch Tunnel in Sand (사질토지반에서 2 Arch 터널의 거동)

  • Lee, Sang-Duk;Cheon, Eun-Sook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.2
    • /
    • pp.171-182
    • /
    • 2004
  • This study is focused on finding out the mechanical behavior of pillars and the ground adjacent to the tunnel depending on the central tunnel size and the invert during the construction of 2 arch tunnels in the sandy ground. Model tests were performed in the trap door system, which was composed of 3 separately movable plates. Central pillar was installed on the central movable plate to measure the pillar loads during the excavation of pilot tunnel and the main tunnel. The load-transfer and the loosening load were measured at the bottom plates adjacent to the 2 arch tunnels. The ground settlement and displacement of the tunnel lining were also measured. As results, not only pillar load but also the load transfer mechanism was influenced by the construction sequences, central tunnel size, and the invert.

  • PDF

Load transfer mechanism due to tunnel excavation in the jointed sandy ground (불연속면을 포함한 사질토 지반에서 터널 굴착에 따른 하중전이)

  • Lee, Sang-Duk;Kim, Yang-Woon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.3
    • /
    • pp.217-226
    • /
    • 2003
  • This study is focused on the finding out load transfer mechanism in the ground near the tunnel during tunnel excavation in the jointed sandy ground. Laboratory model tests were performed on various cases of the overburden heights above tunnel crown, location, and degree of discontinuity planes. For model tests, a movable plate was installed in the midst of the bottom of sandy ground. This plate, moving downwards, was intended to model the stress relaxation during tunnel excavation. The load transfer was measured at the fixed separated bottom plates adjacent to the movable plate. As the result, the loosening zone and the load-transfer form around the tunnelling site were affected by the overburden height and the characteristics of discontinuous planes. And large loosening zone was developed along the discontinuous planes which were close to the tunnel.

  • PDF