• Title/Summary/Keyword: Archer's Paradox

Search Result 3, Processing Time 0.016 seconds

Measurement of Archer's Paradox Size using Multiple Frames (다중프레임을 이용한 궁사의 패러독스 크기 측정)

  • Kim, Jonggeun;Jeong, Yeongsang;Song, Moonjae;Kim, Sungshin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.21-26
    • /
    • 2014
  • An arrow produced by a manufacturing process is evaluated using the archer's paradox and the intensity of the impact point. The accuracy rate in particular is changed by the arrow's vibrational movement, which is called the archer's paradox. The archer's paradox occurs not only in the right, left, upward, and downward directions, but in all directions. The optimized value of the archer's paradox has not been studied yet. This paper proposes to measure the archer's paradox to determine its optimized value. Measuring the archer's paradox using a high-speed camera is expensive, and it is difficult to translate the result to a numerical value. However, the device for measuring the archer's paradox proposed in this paper is inexpensive, and the results are easy to convert to a numerical value. Therefore, this device is more suitable for optimization of the archer's paradox than a high-speed camera. In this paper, we propose to measure the size of the paradox using multiple frames, which can measure the position of an arrow moving at a speed of 300km/h to within millimeters. We calculate the size of the paradox experimentally using the measured location in each frame. This value is not an approximate value, but an accurate numerical value.

Hardware Configuration and Paradox Measurement for the Determination of Arrow Trajectory (화살의 이동궤적을 위한 하드웨어 구성 및 패러독스 측정)

  • Jeong, Yeong-Sang;Yu, Jung-Won;Lee, Han-Soo;Kim, Sung-Shin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.459-464
    • /
    • 2012
  • The point of impact, the shot group, and the flight traces depend on the combination of unique features which decide moving traces of the arrow (paradox of the archer, length of the arrow shaft, weight, angle of the feather, and spline of the arrow shaft). The more dense the impact points in the shot group and the earlier elimination of paradox of the archer, the higher assessment is given for the product. However, there is no way to objectively assess the efficiency and quality of the arrow, and there is no numeric data to be used as the basis for comparison with other products. Although capturing the images of flying arrow using a high-speed motion picture camera is possible, we are limited to observation from specific view angle only. Hence, the criteria for efficiency and quality assessment are mostly based on subjective opinions of experts or hunters, or review on consumers' remarks. In this paper, we propose a hardware composition that are based on three detection frames consisting of line lasers and photo diode arrays without the high-speed motion picture camera. Predicated on measured coordinates data, a nobel method for the archer's paradox measurement, a key parameter that determine the arrow's trajectory, and corresponding numerical analysis model is proposed.

Measuring System for Impact Point of Arrow using Mamdani Fuzzy Inference System (Mamdani 퍼지추론을 이용한 화살의 탄착점 측정 시스템)

  • Yu, Jung-Won;Lee, Han-Soo;Jeong, Yeong-Sang;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.521-526
    • /
    • 2012
  • The performance of arrow from a manufacturing process depends on arrow's trajectory(archer's paradox) and intensity of an impact points. Especially, when conducting a shooting experiment over and over in the same experiment condition, the intensity of impact point is an objective standard to judge the performance of the arrow. However, the analysis method for the impact point is not enough, a previous research of the arrow's performance has been focused on a skill to optimize a manufacturing variables(feathers of an arrow, barb of an arrow, arrow's shaft, weight, external diameter, spine). In this paper, We propose measurement system of arrow's impact point with Mamdani fuzzy inference system and similarity of polygon for automation of impact point's measurement. Measuring the impact point data of the arrow moving with a high speed(approximately 275km/h) by using line laser and photo diode array, then the measured data are mapped to arrow's impact point with fuzzy inference and similarity of polygon.