• Title/Summary/Keyword: Arch Types

Search Result 173, Processing Time 0.03 seconds

Effects of Foot Orthotics on the Foot Arch Strain related to Plantar Fasciitis During Treadmill Level and Uphill Walking and Running (평지와 오르막경사의 트레드밀 걷기와 달리기 동안 발보장구가 발바닥근막염과 관련된 발아치 스트레인에 미치는 영향)

  • Kim, Seung-Jae;Stefanyshyn, Darren;Kim, Ro-Bin
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.155-176
    • /
    • 2005
  • There is some evidence that one of major factors to produce plantar fasciitis depends on the magnitude of the foot arch strain. The orthotics that can reduce the foot arch strain during locomotion may be effective to prevent or treat plantar fasciitis. Therefore, the purpose of this study was to investigate the effect of control condition and three types of foot orthotics on 3-dimensional foot arch strain that can produce plantar fasciitis during treadmill level and uphill walking and running. Sixteen male subjects are recruited and the arch length and height strain according to three types of foot orthotics with respect to control condition were measured by using two digital video cameras. The first hypothesis which the comfort of foot orthotics would be increased from arch pad, half length orthotics to full length orthotics was mostly accepted. It suggested that the types of the foot orthotics could be properly prescribed according foot regions that is pain or abnormal. The second hypothesis which the foot arch strain can be reduced by foot orthotics during level heel-toe walking and running and the third hypothesis which the foot arch strain can be reduced by foot orthotics during uphill heel-toe walking and running were rejected. The foot arch length and height strain during walking and running showed small and subject-specific characteristics and could not be optimal biomechanical variable to prove the overall comfort. The forth hypothesis which the foot arch strain cannot be reduced by foot orthotics during uphill toe walking and running was accepted. With the foot arch length and height strain during uphill toe walking and running the windlass mechanism suggested by Hicks can be explained successfully and excessive uphill toe walking and running can be one of cause of plantar fasciitis. The dynamic investigation on the foot arch such as walking and running should be carefully observed with integrated insights considering ligaments and foot bones as well as plantar fascia, extrinsic muscles and tendons, and intrinsic muscles and tendons.

New classification of lingual arch form in normal occlusion using three dimensional virtual models

  • Park, Kyung Hee;Bayome, Mohamed;Park, Jae Hyun;Lee, Jeong Woo;Baek, Seung-Hak;Kook, Yoon-Ah
    • The korean journal of orthodontics
    • /
    • v.45 no.2
    • /
    • pp.74-81
    • /
    • 2015
  • Objective: The purposes of this study were 1) to classify lingual dental arch form types based on the lingual bracket points and 2) to provide a new lingual arch form template based on this classification for clinical application through the analysis of three-dimensional virtual models of normal occlusion sample. Methods: Maxillary and mandibular casts of 115 young adults with normal occlusion were scanned in their occluded positions and lingual bracket points were digitized on the virtual models by using Rapidform 2006 software. Sixty-eight cases (dataset 1) were used in K-means cluster analysis to classify arch forms with intercanine, interpremolar and intermolar widths and width/depth ratios as determinants. The best-fit curves of the mean arch forms were generated. The remaining cases (dataset 2) were mapped into the obtained clusters and a multivariate test was performed to assess the differences between the clusters. Results: Four-cluster classification demonstrated maximum inter-cluster distance. Wide, narrow, tapering, and ovoid types were described according to the intercanine and intermolar widths and their best-fit curves were depicted. No significant differences in arch depths existed among the clusters. Strong to moderate correlations were found between maxillary and mandibular arch widths. Conclusions: Lingual arch forms have been classified into 4 types based on their anterior and posterior dimensions. A template of the 4 arch forms has been depicted. Three-dimensional analysis of the lingual bracket points provides more accurate identification of arch form and, consequently, archwire selection.

Assessment of post-earthquake serviceability for steel arch bridges with seismic dampers considering mainshock-aftershock sequences

  • Li, Ran;Ge, Hanbin;Maruyama, Rikuya
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.137-150
    • /
    • 2017
  • This paper focuses on the post-earthquake serviceability of steel arch bridges installed with three types of seismic dampers suffered mainshock-aftershock sequences. Two post-earthquake serviceability verification methods for the steel arch bridges are compared. The energy-absorbing properties of three types of seismic dampers, including the buckling restrained brace, the shear panel damper and the shape memory alloy damper, are investigated under major earthquakes. Repeated earthquakes are applied to the steel arch bridges to examine the influence of the aftershocks to the structures with and without dampers. The relative displacement is proposed for the horizontal transverse components in such complicated structures. Results indicate that the strain-based verification method is more conservative than the displacement-base verification method in evaluating the post-earthquake serviceability of structures and the seismic performance of the retrofitted structure is significantly improved.

Case study on stability performance of asymmetric steel arch bridge with inclined arch ribs

  • Hu, Xinke;Xie, Xu;Tang, Zhanzhan;Shen, Yonggang;Wu, Pu;Song, Lianfeng
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.273-288
    • /
    • 2015
  • As one of the most common failure types of arch bridges, stability is one of the critical aspects for the design of arch bridges. Using 3D finite element model in ABAQUS, this paper has studied the stability performance of an arch bridge with inclined arch ribs and hangers, and the analysis also took the effects of geometrical and material nonlinearity into account. The impact of local buckling and residual stress of steel plates on global stability and the applicability of fiber model in stability analysis for steel arch bridges were also investigated. The results demonstrate an excellent stability of the arch bridge because of the transverse constraint provided by transversely-inclined hangers. The distortion of cross section, local buckling and residual stress of ribs has an insignificant effect on the stability of the structure, and the accurate ultimate strength may be obtained from a fiber model analysis. This study also shows that the yielding of the arch ribs has a significant impact on the ultimate capacity of the structure, and the bearing capacity may also be approximately estimated by the initial yield strength of the arch rib.

Creep analysis of concrete filled steel tube arch bridges

  • Wang, Y.F.;Han, B.;Du, J.S.;Liu, K.W.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.639-650
    • /
    • 2007
  • Applying the method calculating creep of Concrete Filled steel Tube (CFT) members based on the Elastic Continuation and Plastic Flow theory for concrete creep with the finite element method, the paper develops a new numerical method for the creep of CFT arch bridges considering effects of bending moment. It is shown that the method is feasible and reasonable through comparing the predicted stresses and deflection caused by the creep with the results obtained by the method of Gu et al. (2001) based on ACI209R model and experimental data of an actual CFT arch bridge. Furthermore, nine CFT arch bridges with different types are calculated and analyzed with and without the effects of bending moment. As a result, the bending moment has considerable influences on long-term deformations and internal forces of CFT arch bridges, especially when the section of arch rib is subjected to a large bending moment.

The Effects of the Foot Types and Structures of the Inner Arch Support Bands on Ground Reaction Force Variables and Sensations during 2nd Vertical Ballet Jump

  • Kim, Juhyun;Yi, Kyungock
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.1
    • /
    • pp.25-33
    • /
    • 2017
  • Objective: The purpose of this research was to establish the differences of ground reaction force variables and sensations according to the foot types and the structures of the inner arch support band during $2^{nd}$ vertical ballet jump. Method: 12 Female ballet majors in their twenties who have danced for more than 10 years and had no injuries were selected for this research. Independent variables consist of the foot type (pes rectus, pes planus) and the structure of the inner arch support band (no band, x-shaped, linear shaped). Dependent variables consist of ground reaction force variables and relative wearing sensation. Results: The impact decreased the most when x-shaped bands were used on pes rectus and rigid pes planus. When linear-shaped bands were used on flexible pes planus, the impact decreased. Conclusion: The bands also helped reduce the impact on pes rectus. Furthermore, it is clear that according to the foot type, the impact reducing band structures perform differently. The inner arch support bands were necessary for jump training for any foot type.

The Comparision of the Static Balance, Contact Area, and Plantar Pressure of Flexible Flat Foot According to Elastic Taping

  • Hyeon-Seong Joo;Sam-Ho Park;Myung-Mo Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.421-429
    • /
    • 2022
  • Objective: The purpose of this study was to compare and analyze the effects of arch support taping on static balance, static/dynamic foot contact area, and ground reaction force during walking according to the types of elastic tapes with mechanical elasticity differences. Design: Cross-sectional study Methods: Twenty-six participants selected for flexible flat feet through the navicular drop test were randomly assigned to non-taping, Dynamic-taping, and Mechano-taping conditions. Static balance and foot contact area were compared in the standing posture according to arch support taping conditions, and foot contact area and ground reaction force were compared during walking. Results: There was no significant difference in static balance according to the taping condition in the standing position, but the foot contact area in the Mechano-taping condition showed a significant decrease compared to the non-taping condition (p<0.05). The foot contact area during walking significantly decreased in the Dynamic-taping and Mechano-taping conditions (p<0.05), but there was no significant difference between the ground reaction force. Conclusions: Based on the results of this study, it was confirmed that among the types of elastic taping, arch support taping using dynamic taping and Mechano-taping has the effect of supporting the arch with high elastic recovery. Any type of elastic tape can be used for arch alignment in flexible flat foot.

Non-periodic motions and fractals of a circular arch under follower forces with small disturbances

  • Fukuchi, Nobuyoshi;Tanaka, Takashi
    • Steel and Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.87-101
    • /
    • 2006
  • The deformation and dynamic behavior mechanism of submerged shell-like lattice structures with membranes are in principle of a non-conservative nature as circulatory system under hydrostatic pressure and disturbance forces of various types, existing in a marine environment. This paper deals with a characteristic analysis on quasi-periodic and chaotic behavior of a circular arch under follower forces with small disturbances. The stability region chart of the disturbed equilibrium in an excitation field was calculated numerically. Then, the periodic and chaotic behaviors of a circular arch were investigated by executing the time histories of motion, power spectrum, phase plane portraits and the Poincare section. According to the results of these studies, the state of a dynamic aspect scenario of a circular arch could be shifted from one of quasi-oscillatory motion to one of chaotic motion. Moreover, the correlation dimension of fractal dynamics was calculated corresponding to stochastic behaviors of a circular arch. This research indicates the possibility of making use of the correlation dimension as a stability index.

Radian of the vault influencing the seismic performances of straight wall arch underground structures

  • Ma, Chao;Lu, Dechun;Qi, Chengzhi;Du, Xiuli
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.637-649
    • /
    • 2021
  • Great efforts have been conducted to investigate the seismic performances of the arch and rectangular underground structures, however, the differences between seismic responses of these two types of underground structures, especially the vault radian influencing the seismic responses of arch structures are not clarified. This paper presents a detailed numerical investigation on the seismic responses of arch underground structures with different vault radians, and aims to illustrate the rule that vault radian affects the seismic responses of underground structures. Five arch underground structures are built for nonlinear soil-structure interaction analysis. The internal forces of the structural components of the underground structures only under gravity are discussed detailedly, and an optimum vault radian for perfect load-carrying functionality of arch underground structures is suggested. Then the structures are analyzed under seven scaled ground motions, amounting to a total of 35 dynamic calculations. The numerical results show that the vault radian can have beneficial effects on the seismic response of the arch structure, compared to the rectangular underground structures, causing the central columns to suffer smaller axial force and horizontal deformation. The conclusions provide some directive suggestions for the seismic design of the arch underground structures.

Assessment of Visual Characteristics on Arch Bridge Using Landscape Simulation (경관시뮬레이션을 이용한 아치교량의 시각적 특성평가)

  • Jung, Sung-Gwan;Park, Young-Eun;Park, Kyung-Hun;You, Ju-Han;Kim, Kyung-Tae;Lee, Woo-Sung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.4
    • /
    • pp.48-56
    • /
    • 2007
  • This study was to understand the component that affects the formative beauty and to present the direction of bridge design for improving the image of urban landscape to survey the visual effect and landscape Preference by the change of bridge type. The results of this study are as follows. In the results of image analysis by bridge types, the images of one-arch bridges are unique and interesting, whereas more than two successive arched bridge were harmonize, stable, consecutive and regular. In the case of the arch rib, braced-rib arch bridge was assessed that complicated, diverse and interesting more than solid-rib arch bridge. The results of factor analysis on the psychological factor were classified into three categories: orderliness, aesthetic and symbolism. In the results of analysis on psychological factors by bridge types, the orderliness and symbolism were different in the position of path, and the number of arches, too. In case of arch rib, symbolism was different. In the preference analysis, they showed a sensitive reaction in the background of building. In the results of the relativity preference and psychological factor, according to aesthetic, symbolism and orderliness, there was an effect on the background of building. And, there showed the high effect in order of aesthetic, orderliness and symbolism in the background of mountain and building. This study should be objective raw data of the arch bridge design for improving the urban landscape. In the future, aesthetic variables like colors or textures should be considered for more exact evaluation.