• Title/Summary/Keyword: Arc-crack

Search Result 101, Processing Time 0.026 seconds

Fatigue behavior of mechanical structures welded with different filler metal

  • Alioua, Abdelkader;Bouchouicha, Benattou;Zemri, Mokhtar;IMAD, Abdellatif
    • Advances in materials Research
    • /
    • v.6 no.3
    • /
    • pp.233-243
    • /
    • 2017
  • This paper describes an investigation on the effect of using three different filler metals on fatigue behavior of mechanical structures welded. The welding is carried out on the steel A510AP used for the manufacture of gas cisterns and pipes. The welding process used is manual welding with coated electrodes and automatic arc welding. Compact tension CT50 specimen has been used. The three zones of welded joint; filler metal FM, heat affected zone HAZ and base metal BM have been investigated. The results show that the crack growth rate CGR is decreasing respectively in BM, FM and HAZ; however, this variation decreases when stress intensity factor SIF increases. For low values of SIF, the CGR is inferior in the over-matched filler metal of which the value of mismatch M is near unity, but for high values of M the CGR is superior, and the effect of the over-matching on CGR becomes negative. No deviation of the crack growth path has been noticed.

Creep and creep crack growth behaviors for base, weld, and heat affected zone in a grade 91 weldment

  • Kim, Woo-Gon;Sah, Injin;Kim, Seon-Jin;Lee, Hyeong-Yeon;Kim, Eung-Seon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.572-582
    • /
    • 2021
  • This study investigated the creep and creep crack growth (CCG) behavior of the base metal (BM), weld metal (WM), and heat affected zone (HAZ) in a Gr. 91 weldment, which was made by a shield metal arc weld process. A series of tensile, creep, and CCG tests were performed for the BM, WM, and HAZ at 550 ℃. Creep behavior of the BM, WM, and HAZ was analyzed in terms of various creep laws; Norton's power-law, Monkman-Grant relation and damage tolerance factor (λ), and their constants were determined. In addition, each CCGR law for the BM, WM, and HAZ was proposed and compared in terms of a C*-fracture parameter. The WM and HAZ revealed faster creep rate, lower rupture ductility, and faster CCGRs than the BM, but they showed a similar behavior in the creep and CCG. The CCGRs obtained in the present study exhibited a marginal difference when compared with those of RCC-MRx of currently elevated design code in France. A creep crack path in the HAZ plane progressed towards a weak fine-grained HAZ adjacent to the BM.

Utilization of Electric Arc furnace Slag md Converter Slag after Aging for Concrete Aggregate (콘크리트용 골재로서 에이징처리한 제강슬래그외 활용)

  • 문한영;유정훈
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.597-607
    • /
    • 2002
  • Electric arc furnace and converter slag are produced by about 6 millions tons in Korea at 2000 year. But compared with blast furnace slag, those are utilized only in unvalued material like landfill and road construction. There are unstable materials, like free CaO, in electric arc furnace and converter slag at steel-manufacturing process. This might cause volume expansion in concrete, if electric arc furnace and converter slag aggregates were used in concrete. This expansion may reach to crack or collapse of concrete. It is therefore settled by standard specification for concrete that electric arc furnace and converter slag aggregates have not to use in concrete. First of all, volume stability and stabilized process should be solved in electric arc furnace and converter slag aggregate to use in concrete. In this study, 6 types of aging are evaluated for effects of stabilization to reduce the expansion of electric arc furnace and converter slag. h converter slag aggregate, these types of aging are not good for volume stability for concrete aggregate, and even if converter slag aggregate is treated with aging, concrete with it has some problems that strength is reduced with curing days. But in electric arc furnace slag aggregate treated with hotwater and steam aging, the expansion of electric arc furnace slag aggregate is reduced about two times than that of converter slag aggregate, and electric arc furnace slag aggregate concrete has good results in strength compared with control concrete using crushed stone.

A Study on the Electrical and Mechanical Properties of a Epoxy Powder for Compact Bus Duct (콤팩트 부스덕트용 에폭시분체도료의 전기적.기계적 특성연구)

  • Kim, Sang-Hyun;Choi, Jin-Wook;Kim, Dong-Wook;Kim, Hyun-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.210-217
    • /
    • 2009
  • Insulated methods of compact bus duct has been applied a way of coating Epoxy powder. The problem which is caused by degradation during operation is very important in severe environment. Therefore, this study compared and verified many kind of properties ; electrical breakdown by thermal and water aging, v-t characteristic, arc discharge, mechanical properties, bending test and cross cut. Sample D was stable before the $T_g$ to be about $7{\sim}10 %$ decrease in the breakdown test according to temperature change. In case of V-t and arc discharge, it had been kept up suitable characteristic. Also, in case of electrical and mechanical characteristic, both sample D and A have excellent capacity.

TRANSFORMER EXPLOSION AND FIRE PREVENTION (변압기 폭발/화재 방지 기술)

  • Kim, Hyung-Seung;Magnier, Philippe
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.93-94
    • /
    • 2007
  • An essential step for SERGI is to show the TRANSFORMER PROTECTOR (TP) efficacy for all transformers and all types of rupture of insulation. Its research program philosophy is thus to maintain a strong connection between experiments and the theoretical developments. Up to now, two TP test campaigns have been performed, both under the worst conditions by creating low impedance faults leading to electrical arcs inside the transformer tank dielectric oil. In 2002, Electricite de France performed 28 TP tests. Then, in 2004, a second campaign of 34 TP tests was carried out by CEPEL, the Brazilian independent High Voltage Laboratory. For the 62 tests, each transformer was equipped with the TP, which reacts directly to the moving dynamic pressure peak, shock wave, caused by the low impedance fault. When an electrical arc occurs, only one pressure peak is generated. The initial energy transfer is almost instantaneous, and so is the phase change. Because of the oil inertia, the gas is very quickly pressurised. As it is more difficult to vaporise a liquid than to crack oil-vapour into smaller molecules, the arc location would mainly remain in the gaseous phase after and less gas will be produced. As a result, when comparing tests for which pressure peaks are respectively equal to 8 bar (116 psi) and 8.8 bar (127 psi), the corresponding arc energies vary by an order 10 of magnitude (0.1 MJ and 1 MJ respectively). The correlation of the results obtained between arc energy and dynamic pressure demonstrates that the arc energy is not the key parameter during transformer tank explosion, which is in opposition with the common electrical engineers belief.

  • PDF

Development of New Z-Factor for the Evaluation of Circumferential Surface Crack In Ferristic Steel Pipings (페라이틱 강 배관내의 원주방향 표면균열 평가를 위한 새로운 Z-Factor의 개발)

  • Choi, Yeong-Hwan;Chung, Yeon-Ki;Lee, Jeong-Bae;WilkowsKi, Gery
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1798-1809
    • /
    • 1996
  • The purpose of this paper is to develop new Z-Factors to evaluate the behavior of circumferential surface crack in ferritic steel piping including base metal and Submerged Arc Weld(SAW) metal in nuclear power plant. The Z-factor is a load multiplier to convert plastic load to elasto-plastic load. However the current Z-Factor is a load multiplier to convert plastic load to elasto-plastic load. However the current Z-Factor gives too conservative results. In this study, a J-estimation method, SC.TNP method, which is based on GE/EPRI expression, is used to develop new Z-Factors. The desirabilities of both the SC.TNP mehtod and the new Z-Factors are examined using the previous experimental results for the circumferential surface crack in ferritic steel pippings. The results are as follows ; (1) The SC.TNP mehtod is good for describing the circumferential surface crack behavior in farritic steel pipings, while the well-known R6 mehtod and DPFAD method give too conservative results. (2) The ASME-Z-Factor method using nwe Z-Factors well predicts the behavior of circumferential surface crack in ferritic steel pipings including base emtal and SAW metal.

A Study on Assessment Method of Crack Resistance and Thermal Shock Resistance in Hardfacing for Hot Forging Die (열간단조 금형 육성용접부 내균열성 및 내열충격성 평가방법에 관한 연구)

  • Cho, Sang-Myung;Kim, Sung-Ho;Jung, Yun-Ho;Baek, Seung-Hui;Jang, Jong-Hun;Park, Chul-Gyu;Woo, Hee-Chul;Jung, Byong-Ho
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.79-85
    • /
    • 2010
  • Hardfacing is one of the frequently applying method to increase surface hardness in hot forging die. Recently, hardfacing receives great attention due to it's repair availability and low cost. In hot forging die, crack resistance and thermal shock resistance have been considered as major properties, However there are few studies for the assessment of these properties. So, it is necessary to establish the assessment method for crack resistance and thermal shock resistance in hardfacing for hot forging die. In this study, flux cored arc welding was applied to make hardfacing welds. Three point bending test was carried out to assess hardfacing weld's crack resistance, and high temperature bending test using salt bath was developed for thermal shock resistance. Consequently, it was possible to assess crack resistance and thermal shock resistance of hardfacing welds for hot forging die quantitatively.

Effect of the Mg Content on the Solidification Cracking Susceptibility of the Al-Mg Alloy Laser Welds

  • Yoon, J.W.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.63-70
    • /
    • 2001
  • The solidification cracking susceptibilities of Al-Mg alloy laser welds were assessed using self-restraint tapered specimen crack test. The dependence of cracking susceptibility of Al-Mg alloy laser welds on Mg contents was observed to be similar to that of arc welds in the same materials. The cracking susceptibility of Al-Mg alloy laser welds increased as Mg content increased up to 1.6-1.9 wt.% and then it decreased as Mg content increased further. The peak cracking susceptibility occurred at around 1.6 to 1.9 wt.% Mg for both autogenous and wire feed welds. It was also observed that the cracking susceptibility decreased as the grain size of Al-Mg alloy laser welds decreased, when Mg content was in the range higher than 1.9 wt.%.

  • PDF

Butt 용접부에서 잔류응력이 피로균열성장거동에 미치는 영향에 대한 실험적 연구 1

  • 최용식;김영진;우흥식
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.27-34
    • /
    • 1988
  • The objective of this paper is to investigate the effect of residual stress on fatigue crack growth behavior. For this purpose, submerged arc welding was performed on SM50A steel plate and post weld heta treatment (PWHT) was followed. Residual stress distribution on the weld plate was determined by a hole drilling method and a series of .DELTA.P-const. and .DELTA.K-decreasing fatigue test were performed on the three different regions, i.e. weld metal, HAZ and base metla. Following conclusins were achieved. 1. In "as welded" specimens, tensile residual stresses were produced in the center portion of the specimen while compressive residual stresses were produced near the edges. In PWHT specimens, however, most of the residual stresses were disappeared. 2. The fatigue crack growth behavior in low .DELTA.K region was considerably affected by the presence of residual stress in both "as welded" and PWHT specimens. 3. Because of the relaxation of residual stresses in PWHT condition, the values of m increased from 2.62-2.78 (in the "as welded" condition) to 3.57-3.91 (in the "PWHT" condition)3.91 (in the "PWHT" condition)condition)

  • PDF

Ultrasonic Inspection of Cracks in Stud Bolts of Reactor Vessels in Nuclear Power Plants by Signal Processing of Differential Operation

  • Choi, Sang-Woo;Lee, Joon-Hyun;Oh, Won-Deok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.6
    • /
    • pp.439-445
    • /
    • 2005
  • The stud bolt is one of crucial parts for safe operation of reactor vessels in nuclear power plants, Crack initiation and propagation were reported in stud bolts that arc used for closure of reactor vessel and head, Stud bolts are inspected by ultrasonic technique during overhaul periodically for the prevention of stud bolt failure which could induce radioactive leakage from nuclear reactor, In conventional ultrasonic testing for inspection of stud bolts, cracks are detected by using shadow effect It takes too much time to inspect stud bolts by using conventional ultrasonic technique. In addition, there were numerous spurious signals reflected from every oblique surfaces of thread, In this study, the signal processing technique for enhancing conventional ultrasonic technique was introduced for inspecting stud bolts. The signal processing technique provides removing spurious signal reflected from every oblique surfaces of thread and enhances detectability of defects. Detectability for small crack was enhanced by using this signal processing in ultrasonic inspection of stud bolts in Nuclear Power Plants.