• Title/Summary/Keyword: Arc shape ground plane

Search Result 2, Processing Time 0.016 seconds

Design of UWB Antenna with Fork-type structure and circular patch (원형 패치와 포크형 구조가 결합된 UWB 안테나)

  • Ha, Yun-Sang;Kim, Gi-Rae;Choi, Young-Kyu;Yun, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1837-1844
    • /
    • 2016
  • This paper proposes an antenna of the fork type structure that operates in the UWB (Ultra Wide Band) frequency band (3.1 ~ 10.6 GHz). The proposed antenna is attached a circular patch in order to obtain the UWB band characteristics to the fork-type patch antenna. The ground plane is implemented in a arc-shape configuration. The effect of various parameters of the modified fork type radiating patch and partial arc ground plane for UWB operation is investigated. The proposed antenna is made of $34.0{\times}50.0{\times}1.0mm^3$ and is fabricated on the permittivity 4.4 FR-4 substrate. The experiment results shown that the proposed antenna obtained the -10 dB impedance bandwidth 8200 MHz (2.7 ~ 10.9 GHz) covering the UWB bands. This result satisfied the characteristics of ultra-wideband and the proposed antenna will be applicable to an ultra wideband system.

A Study of Particle-Initiated Breakdown Characteristics on a Spacer Surface for $SF_6$ GIS ($SF_6$ GIS용 스페이서 표면에서의 파티클에 의한 절연파괴 특성연구)

  • Kim, Jae-Ho;Lee, Yong-Gil;Kim, Dong-Eui;Lee, Sae-Hun;Kim, Jung-Dal
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1536-1539
    • /
    • 1994
  • The influence due to metallic particle contaminated on spacer surface is remarkable in the decreasing of dielectric strength in $SF_6$ GIS. In relation with this problem, We studied, AC flash-over voltage characteristics and breakdown mechanism are investigated under metallic particle initiated condition in $SF_6$ gas by varying the particle position, particle shape with a plane-plane electrode. The main results arc as follows 1. The small amount of the metallic particle in the gap do not make flash-over voltage to be influence, but the significant decrease of th flash-overed voltage is result in case of the big and long size of the metallic paraticle. 2. Influence of the flash-over voltage are lowest in the mid and are highest in the electrode of metallic particle position. 3. In case of the initiated metallie particle, The more the pressure are high, the more the recluced ratio of flash-over voltage are high. 4. The metallic particle shape which results in the reduced flash-over voltage forced the critical pressure to move in to the region of low pressure. 5. The existance of the metallic particle on the upper electrode side and high pressure make the decreasing ratio of flash-over voltage bigger than that of the ground side electrode.

  • PDF