• Title/Summary/Keyword: Arc plasma

Search Result 556, Processing Time 0.027 seconds

Development of Large-Area RF Ion Source for Neutral Beam Injector in Fusion Devices

  • Chang, Doo-Hee;Jeong, Seung Ho;Kim, Tae-Seong;Park, Min;Lee, Kwang Won;In, Sang Ryul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.179.2-179.2
    • /
    • 2013
  • A large-area RF-driven ion source is being developed at Germany for the heating and current drive of ITER device. Negative hydrogen ion sources are major components of neutral beam injection (NBI) systems in future large-scale fusion experiments such as ITER and DEMO. The RF sources for the production of positive hydrogen ions have been successfully developed at IPP (Max-Planck-Institute for Plasma Physics), Garching, for the ASDEX-U and W7-AS neutral beam heating systems. Ion sources of the first NBI system (NBI-1) for the KSTAR tokamak have been developed successfully with a bucket plasma generator based on the filament arc discharge, which have contributed to achieve a good plasma performance such as 15 sec H-mode operation with an injection of 3.5 MW NB power. There is a development plan of RF ion source at the KAERI to extract the positive ions, which can be used for the second NBI system (NBI-2) of the KSTAR and to extract the negative ions for future fusion devices such as Fusion Neutron Source and Korea-DEMO. The development progresses of RF ion source at the KAERI are described in this presentation.

  • PDF

Fabrication of the Plasma Focus Device for Advanced Lithography Light Source and Its Electro Optical Characteristics in Argon Arc Plasma (차세대 리소그래피 빛샘 발생을 위한 플라스마 집속 장치의 제작과 아르곤 아크 플라스마의 발생에 따른 회로 분석 및 전기 광학적 특성 연구)

  • Lee S.B.;Moon M.W.;Oh P.Y.;Song K.B.;Lim J.E.;Hong Y.J.;Yi W.J.;Choi E.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.380-386
    • /
    • 2006
  • In this study, we had designed and fabricated the plasma focus device which can generate the light source for EUV(Extreme Ultra Violet) lithography. And we also have investigated the basic electrical characteristics of currents, voltages, resistance and inductance of this system. Voltage and current signals were measured by C-dot and B-dot probe, respectively. We applied various voltages of 1.5, 2, 2.5 and 3 kV to the anode electrode and observed voltages and current signals in accordance with various Ar pressures of 1 mTorr to 100 Torr in diode chamber. It is observed that the peak values of voltage and current signals were measured at 300 mTorr, where the inductance and impedance were also estimated to be 73 nH and $35 m{\Omega}$ respectively. The electron temperature has been shown to be 13000 K at the diode voltage of 2.5 kV and this gas pressure of 300 mTorr. It is also found that the ion density Ni and ionization rate 0 have been shown to be $N_i = 8.25{\times}10^{15}/cc$ and ${\delta}$= 77.8%, respectively by optical emission spectroscopy from assumption of local thermodynamic equilibrium(LTE) plasma.

Synthesis of TiO2-xNx Using Thermal Plasma and Comparison of Photocatalytic Characteristics (열플라즈마에 의한 TiO2-xNx의 합성 및 광촉매 특성 비교)

  • Kim, Min-Hee;Park, Dong-Wha
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.270-276
    • /
    • 2008
  • $N_2$ doped $TiO_2$ nano-sized powder was prepared using a DC arc plasma jet and investigated with XRD, BET, SEM, TEM, and photo-catalytic decomposition. Recently the research interest about the nano-sized $TiO_2$ powder has been increased to improve its photo-catalytic activity for the removal of environmental pollutants. Nitrogen gas, reacting gas, and titanium tetrachloride ($TiCl_4$) were used as the raw materials and injected into the plasma reactor to synthesize the $N_2$ doped $TiO_2$ power. The particle size and XRD peaks of the synthesized powder were analyzed as a function of the flow rate of the nitrogen gas. Also, the characteristics of the photo-catalytic decomposition using the prepared powder were studied. For comparing the photo-catalytic decomposition performance of $TiO_2$ powder with that of $TiO_2$ coating, $TiO_2$ thin films were prepared by the spin coating and the pulsed laser deposition. For the results of the acetaldehyde decomposition, the photo-catalytic activity of $TiO_{2-x}N_x$ powder was higher than that of the pure $TiO_2$ powder in the visible light region. For the methylene blue decomposition, the decomposition efficiency of $TiO_2$ powder was also higher than that of $TiO_2$ film.

C0$_{2}$ 레이저를 이용한 스테인리스강의 절단특성

  • 이준호;김규태;나일;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.23-27
    • /
    • 1993
  • 스테인리스강은 내식성, 내열성, 내산화성이 좋으므로 화학산업, 의학용기, 고정밀 산업 등에서 많이 사용되고 있다. 스테인리스강은 열전도율이 낮고 용융물의 점성이 크고 가공경화가 심하기 때문에 인코넬 티탄합금 등과 함께 난삭재로 알려져 있다. 스테인리스강의 고합금강을 사용한 기계가공은 공구의 마모가 심하게 일어나므로 가 공이 어렵다. 화염절단(Flame dutting)도 합금물의 버닝(burning)현상을 막는 성질 때문에 잘쓰이지 않고 플라 즈마-아크(plasma-arc) 절단은 수중에서 이루어질 경우 절단끝이 산화되지 않는 좋은 절단면을 얻을 수 있으나 수중에서 사용해야 하는 어려움이 있다. 레이저를 이용한 가공은 절단폭이 작아 재료의 손실이 적으며 복잡한 형상의 절단도쉽고 공구의손실이 없는등 많은 장점이 있어서 사용이 증가하고 있다. 본 연구에서는 스테인리스 강의 절단메커니즘에대한 이해를 돕기 위해 절단가공에 큰 영향을 끼치는 레이저 출력, 절단속도, 절단가스의 압력, 재질, 절단두께를 절단변수로채택하여 절단을 수행하였다. 절단결과를 비교 검토하여 절단변수가 절단에 미치는 영향을 분석하였고 최적의 절단을 얻는 가공조건을 제시하였다.

Preparation and Characterization of Crystalline Carbon Nitride (결정질 질화탄소 박막의 합성과 그 특성 해석)

  • 김종일;배선기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.835-844
    • /
    • 2001
  • In this paper, we report the successful growth of crystalline carbon nitride films in Si(100) by a laser-electric discharge method. The laser ablation of the target leads to vapor plume plasma expending into the ambient nitrogen arc discharge area. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy(AES) were used to identify the binding structure and the content of the nitrogen species in the deposited films. The surface morphology of the films with a deposition time of 2 hours is studied using a scanning electron microscopy (SEM). In order to determine the structural crystalline parameters, X-ray diffraction (XRD) was used to analysis the grown films.

  • PDF

Plasma Transfferrd Arc(PTA) Surfacing process (PTA 육성용접)

  • 김영섭
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.28-35
    • /
    • 1996
  • 플라즈마에 의한 표면경화법(이하 PTA 육성용접이라고 함)은 개발된 이후 필요한 변수가 너무 많아 오랫동안 폭넓게 적용이 되지 못하고 있었다. 따라서 아주 우수한 코팅 품질을 필요로 하거나 재료측면에서 다른 방법을 사용할 수 없는 경우에 만 적용이 되어왔다. 그리고 경제성보다는 안정성이 우선적으로 보장 되어야 하는 경우, 예를 들면, 핵시설물, 화학설비 또한 엔진설비와 같은 곳에 사용이 되었다. 그 러나 최근에 들어서 특별히 microprocessor와 제어기술의 적용이 적은 비용으로도 가능해지면서 새로운 장치가 개발되었고, 많은 연구에 의하여 코팅의 특성에 미치는 영향을 파악하게 되므로써 PTA 육성용접이 신뢰성이 있으며 다른 육성방법에 비해서 우수한 공정으로 자리를 잡게 되었다. 한편 PTA 육성용접은 낮은 dilution, 좁은 열 영향부 그리고 상대적으로 높은 적층율의 특성이 있어 큰 부피를 코팅하거나 중요한 부품에 적용하기에 적합하다. PTA 장치가 반자동 또는 완전 자동화되면서 상대적으로 운용이 쉬워져 이러한 적용성은 더욱 확대되고 있다. PTA 육성용접은 Table 1에서 보는 바와 같이 다른 표면 경화법에 비하여 투자비용은 많이 들더라도 그 특성에 있 어서는 우수하다고 할 수 있다.

  • PDF

A Study on the Abrasive Wear Properties of the PTA Overlay Layers using the Super Alloy Powder (초내열합금분말에 의한 PTA 오버레이부의 연삭 마모 특성 연구)

  • Kim, Young-Sik;Choi, Young-Gook;Lim, Chang-Hoon;Kim, Jong-Do
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.80-84
    • /
    • 2009
  • The Plasma Transferred Arc (PTA) overlay welding method is lately introduced as one of the most useful surface overlay method of the engine component. In this paper, the overlay welding on the SNCrW heat resisting alloy was conducted by the PTA overlay welding process using the super alloy powder. The characteristics of the overlay layers were investigated through the metallurgical and abrasive test. Experimental results showed that the overlay on the SNCrW heat resisting alloy surface was successfully made without hot cracking. The friction wear characteristics of the Co-base Stellite 6 overlayer were most superior. However the abrasive wear characteristics were most inferior in the Co-base Stellite 6 overlayer.

Spray Coating Technology (스프레이 코팅 기술)

  • Lee, Chang-Hee
    • Journal of ILASS-Korea
    • /
    • v.13 no.4
    • /
    • pp.193-199
    • /
    • 2008
  • Spray coating is a versatile surface modification technology in which coating is built-up based on the successive deposition of micron-scaled particles. Depending on the coating materials, the coatings can meet the required mechanical properties, corrosion resistance, and other properties of base materials. Spraying processes are mainly classified into thermal and kinetic spraying according to their bonding mechanism and deposition characteristics. Specifically, thermal spraying process can be further classified into many categories based on the design and mechanism of the process, such as frame spraying, arc spraying, atmospheric plasma spraying (APS), and high velocity oxygen-fuel (HVOF) spraying, etc. Kinetic spraying or cold gas dynamic spraying is a newly emerging coating technique which is low-temperature and high-pressure coating process. In this paper, overall view of thermal and kinetic spray coating technologies is discussed in terms of fundamentals and industrial applications. The technological characteristics and bonding mechanism of each process are introduced. Deposition behavior and properties of technologically remarkable materials are reviewed. Furthermore, industrial applications of spray coating technology and its potentials are prospected.

  • PDF

Mechanical Properties & Ablation Mechanism of SiC Coated Carbon/Carbon Composite by Pack-cementation Method

  • Kim, J.I.;Oh, I.S.;Joo, H.J.
    • Carbon letters
    • /
    • v.2 no.1
    • /
    • pp.27-36
    • /
    • 2001
  • The pack-cementation process is the method which is formed SiC coating layer to improve weak oxidation properties of CFRCs (carbon fiber-reinforced carbons). This method develops the anti-oxidation coating layer having no dimensional changes and good wetting properties. In this study to improve the oxidative resistance of the prepared 4D CFRCs, the surface of CFRCs is coated by SiC using pack cementation method. The mechanical properties of SiC-coated 4D CFRCs are measured by the 3-point bending test, and their ablation properties are investigated by the arc torch plasma test. From the results, it is found that both mechanical and ablation properties of SiC-coated 4D CFRCs are much better than bare CFRCs.

  • PDF