• Title/Summary/Keyword: Arc plasma

Search Result 556, Processing Time 0.026 seconds

The Study of Plasma Torch for Solid Waste Treatment (고상 廢棄物處理를 위한 플라즈마 토치에 관한 硏究)

  • Park, Hyun-Seo
    • Resources Recycling
    • /
    • v.14 no.1
    • /
    • pp.39-46
    • /
    • 2005
  • A solid-state high power torch with inter-electrode insert (IEI) was developed to treat solid waste (for example, incinerated ash), and it's operation characteristics were obtained in the plasma facility test for waste treatment. According to torch test from this study, at the non-transferred mode voltage is increased by gas volume proportionally, and at the transferred mode it is not affected to voltage change. Especially arc voltage is sustained stable at the range of 10% of total Fe in slag. In addition, Electrical conductivity is 0.05~0.25${\Omega}^{-1}cm^{-1}$, torch efficiency is 75~85% and Erosion rate is 2${\times}10^{-6}~6{\times}10^{-6}$ kg/s.

Plasma Electrolytic Oxidation of Ti-25Ta-xHf for Dental Implants (치과임플란트용 Ti-25Ta-xHf 합금의 플라즈마 전해 산화)

  • Kim, Jeong-Jae;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.344-353
    • /
    • 2018
  • Plasma electrolytic oxidation of Ti-25Ta-xHf alloy in electrolyte containing Ca and P for dental implants was investigated using various experimental techniques. Ti-25Ta-xHf (x=0 and 15 wt.%) alloys were manufactured in an arc-melting vacuum furnace. Micropores were formed in PEO films on Ti-25Ta-xHf alloys in 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at 240 V, 270 V and 300 V for 3 min, respectively. The microstructure of Ti-25Ta-xHf alloys changed from (${\alpha}^{\prime}+{\alpha}^{{\prime}{\prime}}$) phase to (${\alpha}^{{\prime}{\prime}}+{\beta}$) phase by addition of Hf. As the applied potential increased, the number of pore and the area ratio of occupied by micro-pore decreased, whereas the pore size increased. The anatase phase increase as the applied potential increased. Also, the crystallite size of anatase-$TiO_2$ can be controlled by applied voltage.

Fabrication of textured Ni substrates for coated conductor prepared by powder metallurgy and plasma arc melting method (분말법과 주조법으로 제조한 coated conductor용 Ni 기판 개발)

  • 임준형;김정호;김규태;장석헌;주진호;나완수;홍계원;지봉기;김찬중
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.70-74
    • /
    • 2003
  • We fabricated cube textured Ni substrate for YBCO coated conductor and evaluated the effects of processing parameters on microstructural evolution and texture formation. Ni-rods as an initial specimen were prepared by two different methods, i.e., powder metallurgy(PM) and plasma arc melting(PAM). Subsequently, the rods were cold rolled to 100 $\mu\textrm{m}$ thick substrate and annealed at temperatures of $700∼1200^{\circ}C$. The texture of the substrate was characterized by pole-figure. It was observed that the texture of substrate made by P/M did not significantly varied with annealing temperature of 600∼$l100^{\circ}C$ and the full-width at half-maximums (FWHM) of both in-plane and out-of-plane were 9$^{\circ}$$10^{\circ}$. On the other hand, the texture of substrate made by PAM was more dependent on the annealing temperature and the corresponding values were $9^{\circ}$$13^{\circ}$ at the temperature range. In addition, recrystallization twin texture, (221)<221>, was formed as the temperature increased further. OM profiles showed that the grain size of substrate made by P/M was smaller than that made by PAM and this difference was correlated to the microstructure of initial specimens.

  • PDF

Revealing Strong Metal Support Interaction during CO Oxidation with Metal Nanoparticle on Reducible Oxide Substrates

  • Park, Dahee;Kim, Sun Mi;Qadir, Kamran;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.264-264
    • /
    • 2013
  • Strong metal-support interaction effect is an important issue in determining the catalytic ac-tivity for heterogeneous catalysis. In this study, we investigated the support effect and the role of organic capping layers of two-dimensional Pt nanocatalysts on reducible metal oxide supports under the CO oxidation. Several reducible metal oxide supports including CeO2, Nb2O5, and TiO2 thin films were prepared via sol-gel techniques. The structure, chemical state and optical property were characterized using XRD, XPS, TEM, SEM, and UV-VIS spectrometer. We found that the reducible metal oxide supports have a homogeneous thin thickness and crystalline structure after annealing at high temperature showing the different optical band gap energy. Langmuir-Blodgett technique and arc plasma deposition process were employed to ob-tain Pt nanoparticle arrays with capping and without capping layers, respectively on the oxide support to assess the role of the supports and capping layers on the catalytic activity of Pt catalysts under the CO oxidation. The catalytic performance of CO oxidation over Pt supported on metal oxide thin films under oxidizing reaction conditions (40 Torr CO and 100 Torr O2) was tested. The results show that the catalytic activity significantly depends on the metal oxide support and organic capping layers of Pt nanoparticles, revealing the strong metal-support interaction on these nanocatalysts systems.

  • PDF

Characteristics Diagnosis of Supersonic Air Plasma by 0.4 MW Class Segmented Type Arc Torch (0.4 MW급 분절형 아크 토치에 의한 초음속 공기 플라즈마의 특성 진단)

  • Kim, Min-Ho;Lee, Mi-Yeon;Choe, Chae-Hong;Kim, Jeong-Su;Seo, Jun-Ho;Hong, Bong-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.194-195
    • /
    • 2013
  • 초음속 공기 플라즈마 환경을 모사할 수 있는 0.4 MW급 Enhanced Huels형 초음속 공기 플라즈마 발생 장비가 2012년에 전북대학교에 설치 완료되었다. 초음속 공기 플라즈마 시험장비는 대기권으로 reentry 할 수 있는 비행체의 열차폐체 시험평가를 주목적으로 개발되었으며, 핵융합장치용 고온 내열체 소재개발에도 활용될 예정이다. 분절형 아크 플라즈마 토치는 전극부식에 의한 오염도를 적으면서 고출력의 안정적인 플라즈마를 발생시키며, 일반적인 직류 토치로는 얻을 수 없는 초고엔탈피 플라즈마 열유동을 얻을 수 있는 특징이 있다. 구축된 장비는 최대 직류 출력 1,200 kW의 DC 전원공급장치, 0.4 MW급의 분절형 아크 플라즈마 토치, ${\phi}1.5m{\times}2m$ 크기의 진공쳄버, 1 MW의 냉각 능력을 갖춘 디퓨저와 열교환기, 진공 용량 $100m^3$/min의 진공펌프 9대, 88 g/s의 공기유량에서 NOx를 50,000 ppm에서 100 ppm으로 저감할 수 있는 후처리 시스템, 4 bar 15 g/s의 공기를 공급할 수 있는 가스 공급장치, 30 bar 600 lpm의 저전도수와 4 bar 560 lpm의 일반수를 공급할 수 있는 냉각수 공급장치로 구성되어 있다. 초음속 공기 플라즈마의 발생 특성을 시험하기 위해 플라즈마 발생 조건으로 토치공급전력 350 kW와 410 kW, 토치 공기 공급 유량 16.3 g/s, 토치 내부압력 3.9~4.2 bar, 챔버압력 40 mbar으로 시험을 수행하였다. 발생된 플라즈마 상태를 진단하기 위해 속도는 쇄기 탐침기, 열유속은 Gardon 게이지, 엔탈피와 토치 효율은 토치의 공급전력과 냉각수에 의한 손실 전력으로 각각 측정하였다.

  • PDF

Fabrication of Ni-free Fe-based Alloy Nano Powder by Pulsed Wire Evaporation in Liquid: Part 2. Effect of Solvent and Comparison of Fabricated Powder owing to Fabrication Method (액중 전기선 폭발법에 의한 Ni-free Fe계 나노 합금분말의 제조: 2. 용매의 영향 및 제조 방법에 따른 분말입자의 비교)

  • Ryu, Ho-Jin;Lee, Yong-Heui;Son, Kwang-Ug;Kong, Young-Min;Kim, Jin-Chun;Kim, Byoung-Kee;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.18 no.2
    • /
    • pp.112-121
    • /
    • 2011
  • This study investigated the effect of solvent on the fabrication of Ni-free Fe-based alloy nano powders by employing the PWE (pulsed wire evaporation) in liquid and compared the alloy particles fabricated by three different methods (PWE in liquid, PWE in Ar, plasma arc discharge), for high temperature oxidation-resistant metallic porous body for high temperature soot filter system. Three different solvents (ethanol, acetone, distilled water) of liquid were adapted in PWE in liquid process, while X-ray diffraction (XRD), field emission scanning microscope (FE-SEM), and transmission electron microscope (TEM) were used to investigate the characteristics of the Fe-Cr-Al nano powders. The alloy powder synthesized by PWE in ethanol has good particle size and no surface oxidation compared to that of distilled water. Since the Fe-based alloy powders, which were fabricated by PWE in Ar and PAD process, showed surface oxidation by TEM analysis, the PWE in ethanol is the best way to fabricate Fe-based alloy nano powder.

Hardening Characteristics of Aluminum Alloy Surface by PTA Overlaying with Metal Powders (I) (플라즈마분체 오버레이법에 의한 알루미늄합금 표면의 경화특성에 관한 연구(I) -후막 표면 합금화층의 형성조건과 그 조직-)

  • ;中田一博;;;松田福久
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.85-101
    • /
    • 1994
  • Effect of Cr, Cu and Ni metal powders addition on the alloyed layer of aluminum alloy (AC2B) has been investigated with the plasma transferred arc (PTA) overlaying process. The overlaying conditions were 125-200A in plasma arc current, 150mm/min in process speed and 5-20g/min in powder feeding rate. Main results obtained are summarized as follows: 1) It was made clear that formation of thick surface alloyed layer on aluminum alloy is possible by PTA overlaying process. 2) The range of optimum alloying conditions were much wider in case of Cu and Ni powder additions than the case of Cr powder addition judging from the surface appearance and the bead macrostructure. 3) Alloyed layer with Cu showed almost the homogeneous microstructure through the whole layer by eutectic reaction. alloyed layers with Cr and Ni showed needle-like and agglomerated microstructures, the structure of which has compound layer in upper zone of bead by peritectic and eutectic-peritectic reactions, respectively. 4) Microconstituents of the alloyed layer were analyzed as A1+CrA $l_{7}$ eutectics, C $r_{2}$al sub 11/, CrA $l_{4}$, C $r_{4}$A $l_{9}$ and C $r_{5}$A $l_{*}$ 8/ for Cr addition, Al+CuA $l_{2}$(.theta.) eutectics and .theta. for Cu addition, and Al+NiA $l_{3}$ eutectics. NiA $l_{3}$, N $i_{2}$A $l_{3}$ and NiAl for Ni addition. 5) Concerning defect of the alloyed layer, many blow holes were seen in Cr and Ni additions although there was lesser in Cu addition. Residual gas contents in blow hole for Cu and Ni alloyed layer were confirmed as mainly $H_{2}$ and a littie of $N_{2}$ Cracking was observed in compound zone of the alloyed layer in case of Cr and Ni addition but not in Cu alloyed layer.r.r.

  • PDF

High Temperature Combustion Behavior of Carbon/Carbon Composites Coated with SiC (탄화규소로 도포된 탄소/탄소 복합재의 고온 연소거동)

  • Choi, Don-Mook;Kim, Joung-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.1 s.1
    • /
    • pp.127-138
    • /
    • 2001
  • Although Carbon/Carbon Composites(CFRCs) have excellent mechanical properties at high temperature, the disadvantage of combustion in air restricts their applications. Thus a lot of investments have been studied to improve the drawback of CFRCs. In this study, SiC used as a thermal protective coating material possesses almost the same expansion coefficient compared to that of carbon, so SiC was coated on 4D (directional) CFRCs by Pack-Cementation process. For the 4D CFRCs coated with SiC, optical microscopy observations were performed to estimate the coating mechanism involved and TGA tests were also performed to evaluate the improvement of combustion resistance. And their high temperature combustion properties were investigated by the arc torch plasma test. From the results, it is found that the mechanical properties and high temperature combustion properties of the 4D(directional) CFRCs coated with SiC were much better than bare 4D CFRCs.

  • PDF

Tribology Coating Study of Thick DLC (ta-C) Film (DLC (ta-C) 후막코팅을 위한 트라이볼로지 코팅 연구)

  • Jang, Young-Jun;Kang, Yong-Jin;Kim, Gi Taek;Kim, Jongkuk
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.125-131
    • /
    • 2016
  • In recent years, thick ta-C coating has attracted considerable interest owing to its existing and potential commercial importance in applications such as automobile accessories, drills, and gears. The thickness of the ta-C coating is an important parameter in these applications. However, the biggest problems are achieving efficient coating and uniformity over a large area with high-speed deposition. Feasibility is confirmed for the ta-C coating thickness of up to 9.0 µm (coating speed: 3.0 µm/h, fixed substrate) using a single FCVA cathode. The thickness was determined using multiple coating cycles that were controlled using substrate temperature and residual stresses. In the present research, we have designed a coating system using FCVA plasma and produced enhanced thick ta-C coating. The system uses a specialized magnetic field configuration with stabilized DC arc plasma discharge during deposition. To achieve quality that is acceptable for use in automobile accessories, the magnetic field, T-type filters, and 10 pieces of a multi-cathode are used to demonstrate the deposition of the thick ta-C coating. The results of coating performance indicate that uniformity is ±7.6 , deposited area is 400 mm, and the thickness of the ta-C coating is up to 5.0 µm (coating speed: 0.3 µm/h, revolution and rotation). The hardness of the coating ranges from 30 to 59 GPa, and the adhesion strength level (HF1) ranges from 20 to 60 N, depending on the ta-C coating.

The Effect of Current and Preheat Temperature on Structure and Hardness of Stellite 12 Alloy Overlayer by PTA Process (PTA법에 의한 스텔라이트 12 합금 육성층의 조직과 경도에 미치는 전류와 예열온도의 영향)

  • Jung, B.H.;Kim, M.G.;Kim, G.D.;Kim, M.Y.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.246-252
    • /
    • 2000
  • Stellite 12 alloy-powder was overlaid on 410 stainless steel valve seat using plasma transferred arc(PTA) process. Variation of characteristic of microstructure and hardness of deposit with current(90~150 A) and preheat temperature(R.T.~$400^{\circ}C$) was investigated. Important conclusion obtained are as follows; All welding conditions used produced a sound deposit layer with no defect in single pass welding. The maximum deposit had 4.0~4.8 mm in thickness and its bead width was increased with increase of current and preheat temperature. The deposit showed hypoeutectic microstruture, which was consisting of primary cobalt dendrite and networked $M_7C_3$ type eutectic carbides. The amount of eutectic carbides was decreased and its dendritic secondary arm spacing was increased with increase of current. Hardness of the deposit was decreased with increase of current. Preheat temperature up to $400^{\circ}C$, however, showed little influence on the hardness and microstructure. The hardness was also influenced by diluted Fe content near the interface in addition to microstructure and dendritic secondary arm spacing. Hot hardness at $500^{\circ}C$ showed higher than 300 HV.

  • PDF