• 제목/요약/키워드: Arc light sensor

검색결과 24건 처리시간 0.023초

레이져 변위센서를 이용한 용접선 자동추적에 관한 연구(2) (A Study on Automatic Seam Tracking of Arc Welding Using an Laser Displacement Sensor)

  • 양상민;조택동;전진환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.729-733
    • /
    • 1997
  • Due to the variety of disturbance, it is not ease to accomplish the in-process detection of weld line with non-contact sensor. To get around this difficulties problem develop an automatic seam tracking weld system, the reliable signal processing algorithm has been recommanded. In this research, laser displacement sensor is applied as a seam finder in the automatic tracking system. The sensor is controlled by a dc servo motor which is mounted at X-Y moving table. X-Y moving table manipulated by an ac servo motor controls the position and velocity of the welding torch. First, X-Y table moves to Y-axis to search the welding joint feature before starting the welding, and welding joint is from the scanning data and weighting factor for each other. Second, weld line is determined using proposed signal processing algorithm during welding process. Form the experimental results, we could see the possibility that laser displacement sensor with procesed algorithm can be used as a seam finder in welding process under the severe noise (spatter,arc light etc.) condition

  • PDF

주변광 영향을 받지 않는 아크방전 감지 센서 (Arc Discharge Sensor having Noise Immunity to Ambient Light)

  • 노희혁;서용마;히식수렝;최규남
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 춘계학술대회
    • /
    • pp.726-728
    • /
    • 2013
  • 전력배전반 내 아크방전을 감지할 수 있도록 광전자 방식 아크방전 감지센서를 구현하였다. 아크방전은 시작되면 전력시스템에 치명적이므로 전력차단이 발생하기 전에 사전에 이를 감지하는 것이 필요하다. 전력배전반 내 전력 기기에 직접적인 전기적 접촉을 피하기 위하여 광전자적 감지 방식이 사용되었다. $7.5mm^2$의 수광면적을 갖는 수광소자와 $2.16cm^2$ 발광면적에서 1.9J의 에너지를 발광하는 즉 $0.4cal/cm^2$ 에너지 밀도를 갖는 플래쉬 광원을 사용하여 180도 감지각과 감시 목적으로는 충분한 6m 이상의 감지거리가 달성되었다. 아크방전 센서의 반응속도는 1 msec 미만으로 측정되었으며 감도는 최대 0.94 pC 의 전하를 감지할 수 있을 정도로 민감함을 보여주었다.

  • PDF

A Single Lens Micro-Angle Sensor

  • Saito, Yusuke;Gao, Wei;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.14-19
    • /
    • 2007
  • Angle sensors based on the principle of autocollimation, which are usually called autocollimators, can accurately measure small tilt angles of a light-reflecting flat surface. This paper describes a prototype micro-angle sensor that is based on the laser autocollimation technique. The new angle sensor is compact and consists of a laser diode as the light source and a quadrant photodiode as a position-sensing device. Because of its concise design, the microangle sensor facilitates dynamic measurements of the angular error motions of a precision stage without influencing the original dynamic properties of the stage. This is because the sensor only requires a small extra target mirror to be mounted on the stage. The sensitivity of the angle detection is independent of the focal length of the objective lens; therefore, an objective lens with a relatively short focal length is employed to reduce the size of the device. The micro-angle sensor uses a single lens for the both the laser collimation and focusing, which distinguishes it from the conventional laser autocollimation method that has separate collimate and objective lenses. The new micro-angle sensor has dimensions of $15.1\times22.0\times14.0mm$ and its resolution is better than 0.1 arc-second The optical design and performance of this micro-angle sensor were verified by experimental results.

파이프의 가스메탈아크 용접에 있어 센서 시스템을 이용한 용융지 제어 및 용접선 추적에 관한 연구 (A Study on control of weld pool and torch position in GMA welding of steel pipe by using sensing systems)

  • 배강열;이지형;정수원
    • Journal of Welding and Joining
    • /
    • 제16권5호
    • /
    • pp.119-133
    • /
    • 1998
  • To implement full automation in pipe welding, it si most important to develop special sensors and their related systems which act like human operator when detecting irregular groove conditions. In this study, an automatic pipe Gas Metal Arc Welding (GMAW) system was proposed to full control pipe welding procedure with intelligent sensor systems. A five-axes manipulator was proposed for welding torch to automatically access to exact welding position when pipe size and welding angle were given. Pool status and torch position were measured by using a weld-pool image monitoring and processing technique in root-pass welding for weld seam tracking and weld pool control. To overcome the intensive arc light, pool image was captured at the instance of short circuit of welding power loop. Captured image was processed to determine weld pool shape. For weld seam tracking, the relative distance of a torch position from the pool center was calculated in the extracted pool shape to move torch just onto the groove center. To control penetration of root pas, gap was calculated in the extracted pool image, and then weld conditions were controlled for obtaining appropriate penetration. welding speed was determined with a fuzzy logic, and welding current and voltage were determined from a data base to correspond to the gap. For automatic fill-pass welding, the function of human operator of real time weld seam control can be substituted by a sensor system. In this study, an arc sensor system was proposed based on a fuzzy control logic. Using the proposed automatic system, root-pass welding of pipe which had gap variation was assured to be appropriately controlled in welding conditions and in torch position by showing sound welding result and good seam tracking capability. Fill-pass welding by the proposed system also showed very successful result by tracking along the offset welding line without any control of human operator.

  • PDF

인공신경회로망을 이용한 GMA 용접의 공정자동화 (Process Automation of Gas Metal Arc Welding Using Artificial Neural Network)

  • 조만호;양상민;김옥현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.558-561
    • /
    • 2002
  • A CCD camera with a laser strip was applied to realize the automation of welding Process in GMAW. It takes relatively long time to process image on-line control using the basic Hough transformation, but it has a tendency of robustness over the noise such spatter and arc light. The adaptive Hough transformation was used to extract the laser stripe and to obtain specific weld points In this study, a neural network based on the generalized delta rule algorithm was adapted for the process control of GMA, such as welding speed, arc voltage and wire feeding speed.

  • PDF

겹치기이음에서 용접선 시각 추적 시스템에 관한 연구 (A study on vision seam tracking system at lap joints)

  • 신정식;김재웅;나석주;최칠룡
    • Journal of Welding and Joining
    • /
    • 제9권2호
    • /
    • pp.20-28
    • /
    • 1991
  • The main subject of this study is the construction of an automatic welding system that has the capability to trace the weld seam in GMA welding of lap joints. The system was composed of a vision sensor, moving torch, and personal computer(IBM-PC). In the developed vision sensor, an image was captured by the frame grabber at the time of short circuit during welding. The threshold method was adopted for determining the structured light and the central difference method for detecting the weld joint. And the seam tracing of the torch was performed by using the data regeneration algorithm. In this system using the image at the time of short circuit, weld seam tracking was performed without any relations to arc light and spatters.

  • PDF

GMA 용접에서 용접선 추적용 시각센서의 화상처리에 관한 연구 (A Study on the Image Processing of Visual Sensor for Weld Seam Tracking in GMA Welding)

  • 정규철;김재웅
    • Journal of Welding and Joining
    • /
    • 제18권3호
    • /
    • pp.60-67
    • /
    • 2000
  • In this study, we constructed a preview-sensing visual sensor system for weld seam tracking in GMA welding. The visual sensor consists of a CCD camera, a diode laser system with a cylindrical lens and a band-pass-filter to overcome the degrading of image due to spatters and/or arc light. To obtain weld joint position and edge points accurately from the captured image, we compared Hough transform method with central difference method. As a result, we present Hough transform method can more accurately extract the points and it can be applied to real time weld seam tracking. Image processing is carried out to extract straight lines that express laser stripe. After extracting the lines, weld joint position and edge points is determined by intersecting points of the lines. Although a spatter trace is in the image, it is possible to recognize the position of weld joint. Weld seam tracking was precisely implemented with adopting Hough transform method, and it is possible to track the weld seam in the case of offset angle is in the region of $\pm15^{\circ}$.

  • PDF

A Study on the Image Processing of Visual Sensor for Weld Seam Tracking in GMA Welding

  • Kim, J.-W.;Chung, K.-C.
    • International Journal of Korean Welding Society
    • /
    • 제1권2호
    • /
    • pp.23-29
    • /
    • 2001
  • In this study, a preview-sensing visual sensor system is constructed far weld seam tracking in GMA welding. The visual sensor system consists of a CCD camera, a diode laser system with a cylindrical lens, and a band-pass-filter to overcome the degrading of image due to spatters and/or arc light. Among the image processing methods, Hough transform method is compared with the central difference method from a viewpoint of the capability for extracting the accurate feature position. As a result, it was revealed that Hough transform method can more accurately extract the feature positions and it can be applied to real time weld seam tracking. Image processing which includes Hough transform method is carried out to extract straight lines that express laser stripe. After extracting the lines, weld joint position and edge points are determined by intersecting the lines. Even though the image includes a spatter trace on it, it is possible to recognize the position of weld joint. Weld seam tracking was precisely implemented with adopting Hough transform method, and it is possible to track the weld seam in the case of offset angle is in the region of $\pm$ $15^{\circ}$.

  • PDF

GMAW에서 시각센서를 이용한 용접선 정보의 추출과 와이어 승급속도의 제어에 관한 연구 (A Study on Weld Line Detection and Wire Feeding Rate Control in GMAW with Vision Sensor)

  • 조택동;김옥현;양상민;조만호
    • Journal of Welding and Joining
    • /
    • 제19권6호
    • /
    • pp.600-607
    • /
    • 2001
  • A CCD camera with a laser stripe was applied to realize the automatic weld seam tracking in GMAW. It takes relatively long time to process image on-line control using the basic Hough transformation, but it has a tendency of robustness over the noises such as spatter and arc light. For this reason. it was complemented with adaptive Hough transformation to have an on-line processing ability for scanning specific weld points. The adaptive Hough transformation was used to extract laser stripes and to obtain specific weld points. The 3-dimensional information obtained from the vision system made it possible to generate the weld torch path and to obtain the information such as width and depth of weld line. We controled the wire feeding rate using informations of weld line.

  • PDF

I형 맞대기 용접선 추적용 시각센서 시스템에 관한 연구 (A Study on the Vision Sensor System for Tracking the I-Butt Weld Joints)

  • 배희수;김재웅
    • 한국정밀공학회지
    • /
    • 제18권9호
    • /
    • pp.179-185
    • /
    • 2001
  • In this study, a visual sensor system for weld seam tracking the I-butt weld joints in GMA welding was constructed. The sensor system consists of a CCD camera, a diode laser with a cylindrical lens and a band-pass-filter to overcome the degrading of image due to spatters and arc light. In order to obtain the enhanced image, quantitative relationship between laser intensity and iris number was investigated. Throughout the repeated experiments, the shutter speed was set at 1-milisecond for minimizing the effect of spatters on the image, and therefore most of the spatter trace in the image have been found to be reduced. Region of interest was defined from the entire image and gray level of searched laser line was compared to that of weld line. The differences between these gray levels lead to spot the position of weld joint using central difference method. The results showed that, as long as weld line was within $^\pm$15$^\circ$from the longitudinal straight fine, the system constructed in this study could track the weld line successful1y. Since the processing time reduced to 0.05 sec, it is expected that the developed method could be adopted to high speed welding such as laser welding.

  • PDF