• Title/Summary/Keyword: Arc Shield

Search Result 57, Processing Time 0.023 seconds

Control of Bead Geometry and Effect of Protection against Wind according to the CDP Gas Nozzle in Arc Welding (Arc용접에서 CDP Gas Nozzle에 의한 비드형상제어 및 방풍효과)

  • Seo, Ji-Seok;Ham, Hyo-Sik;Im, Sung-Bin;Ha, Jong-Moon;Son, Chang-Hee;Cho, Sang-Myung
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.25-25
    • /
    • 2009
  • 종래의 위보기 자세에서 용접은 중력이 모재의 표면으로 향하고 있어 용융금속이 중력에 의해 표면방향으로 흘러내리게 되어 용접 실시가 불가능하였다. 이에 Shield Gas Force, Trailing Gas Force 그리고 Ahead Gas Force를 적절히 적용하여 Position Welding에서 중력으로 인해 Molten Metal이 처지는 문제를 극복하여 생산성 향상으로 연결할 수 있음을 선행 실험을 통해 확인하였으나 기존의 C(Convergent)형, CP(Convergent Divergent)형 및 P(Parrallel)형 가스 노즐은 용접조건에 따라 실드 가스의 소모량이 많고, 토출되는 실드가스력이 부족하여 용접시 볼록한 이면 비드 형성을 위한 용융 풀을 효과적으로 제어 할 수 없다. 따라서 본 연구에서는 동일량의 실드 가스 공급시 가스 노즐을 통해 토출되는 실드가스의 소모를 줄이고 실드가스력을 극대화하여 저가의 고생산성을 가진 친 환경 용접기술(Green welding)에 부합하는 CDP(Convergent Divergent Parrallel)형 가스 노즐을 제작하여 기존의 CP형 가스 노즐과 비교 분석하였다. 또한 Overhead Position에서의 비드형상제어와 Flat Position에서 방풍효과를 비교해 보았다. 그 결과 CDP Nozzle은 CP Nozzle보다 동일한 유량에서 풍속은 3.5배, 냉각능력은 1.5배, 가스압력은 6.25배로 우수한 성능을 확인할 수 있었고, Overhead Position에서 가스 유량을 동일하게 하여 용접하였을 때 CP Nozzle의 경우 오목한 이면비드가 나타났지만 CDP Nozzle의 경우 볼록하게 양호한 이면비드 형상이 나타났고, Flat Position에서의 방풍효과 비교실험에서 CDP Nozzle에서는 깊고 균일한 용입을 CP Nozzle에서는 불안정한 용입이 나타났는데 이는 CDP Nozzle의 경우 풍속에 의한 Arc Blow가 적게 발생하여 상대적으로 더 나은 용입을 확인하였다.

  • PDF

Effects of Welding Processes on the Low Temperature Impact Toughness of Structural Steel Welded Joints (용접방법에 따른 구조용강 용접 접합부의 저온 충격인성 특성)

  • Lee, Chin Hyung;Shin, Hyun Seop;Park, Ki Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.693-700
    • /
    • 2012
  • In this study, the Charpy impact test along with metallurgical observation was conducted to evaluate low temperature impact toughness of structural steel welds with different welding processes to find out the optimal welding process to guarantee the required impact toughness at low temperatures. The welding processes employed are shield metal arc welding (SMAW) and flux cored arc welding(FCAW), which are commonly used welding methods in construction. The Charpy impact test is a commercial quality control test for steels and other alloys used in the construction of metallic structures. The test allows the material properties for service conditions to be determined experimentally in a simple manner with a very low cost. To investigate the impact toughness at low temperatures of the steel welds, specimens were extracted from the weld metal and the heat affected zone. Standard V-notch Charpy specimens were prepared and tested under dynamic loading condition. The low temperature impact performance was evaluated based on the correlation between the absorbed energy and the microstructure. Analysis of the results showed that the optimal welding process to ensure the higher low temperature impact toughness of the HAZ and the weld metal is SMAW process using the welding consumable for steels targeted to low temperature use.

Feasibility study on the wide and long 9%Ni steel plate for use in the LNG storage inner tank shell

  • Chung, Myungjin;Kim, Jongmin;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.571-582
    • /
    • 2019
  • This study aimed to assess the feasibility on the wide and long 9%Ni steel plate for use in the LNG storage inner tank shell. First, 5-m-wide and 15-m-long 9%Ni steel plates were test manufactured from a steel mill and specimens taken from the plates were tested for strength, toughness, and flatness to verify their performance based on international standards and design specifications. Second, plates with a thickness of 10 mm and 25 mm, a width of 4.8~5.0 m, and a length of 15 m were test fabricated by subjecting to pretreatment, beveling, and roll bending resulting in a final width of 4.5~4.8 m and a length of 14.8m with fabrication errors identical to conventional plates. Third, welded specimens obtained via shield metal arc welding used for vertical welding of inner tank shell and submerged arc welding used for horizontal welding were also tested for strength, toughness and ductility. Fourth, verification of shell plate material and fabrication was followed by test erection using two 25-mm-thick, 4.5-m-wide and 14.8-m-long 9%Ni steel plates. No undesirable welding failure or deformation was found. Finally, parametric design using wide and long 9%Ni steel plates was carried out, and a simplified design method to determine the plate thickness along the shell height was proposed. The cost analysis based on the parametric design resulted in about 2% increase of steel weight; however, the construction cost was reduced about 6% due to large reduction in welding work.

A Study on High Temperature Tensile Property of Inconel 625 for Petroleum Application by Flux cored Arc Welding Process (석유시추용 인코넬 625강의 FCAW용접에 의한 고온인장 특성에 관한 연구)

  • PARK KEYUNG-DONG;AN DO-KEYUNG;JIN YOUNG-BEOM
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.352-355
    • /
    • 2004
  • Inconel 625 is useful in variety of industrial applications because of the resistance to attack in various corrosive media at temperatures from $200^{\circ}C$ to over $1090^{\circ}C$, in combination with good law- and high temperature mechanical strength. Rencently, this material is also used widely in offshore processing piping in order to extend the maintenance tenn and improve the quality of anti-corrosion. In general, high quality weldments for this material are readily produced by commonly used processes. Not all processes are applicable to this material group, Ni-alloys. Metallurgiad characterictics or the unavailability of matching, position or suitable welding processes. Nowadays, the flux cored wire is developed and applied for the better productivity in several welding position including the vertical position. in this study, the weldability and weldment characteristics of inconel 625 are considered in FCAW weld associated with the several shielding gases($80\%Ar\;+\;20\%\;CO_2,\;50\%Ar\;+\;50\%\;CO_2,\;100\%\;CO_2$) in viewpoint of welding productivity.

  • PDF

Thermomechanical Properties of Thermal-Stress Relief Type of Functionally Gradient Materials

  • Watanabe, Ryuzo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1993.11a
    • /
    • pp.2-2
    • /
    • 1993
  • The present status of the thennomechanica1 evaluation of functionally gradient materials(FGMs) for space plane application was reviewed, in which research activities and the cooperation of the national project team organized to study FGM science were demonstrated. The project team was divided into three working groups; de singing, processing and evaluation, each of which had their own tasks in the project cooperation. The testings details of the various thennomechanical tests for the FGM samples fabricated by the processing groups were described, along with their corresponding heating conditions of the real environments in the space plane application. For small-sized samples, laser beam heating test and burner heating test were well applied to study the heat shielding and heat resisting properties. Arc-heated wind tunnel test and high temperature!high velocity gas flow test were used for large-sized panel assemblies having cooling structures. The criteria for the evaluation of the heat shielding and heat resisting properties of the FGMs, as well as a crack activation mechanism in their differential temperature heating, were proposed on the basis of the observation in the burner heating test.

  • PDF

Development of Inconel for Marine Structural Steel by FCAW Process (해양 구조용 인코넬강의 FCAW 용접의 최적기술 개발)

  • PARK KEYUNG-DONG;JIN YOUNG-BEOM;AN DO-KEYUNG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.234-238
    • /
    • 2004
  • Inconel 625 is useful in variety of industrial applications because of the resistance to attack in various corrosive media at temperatures from $200^{\circ}C$ to aver $1090^{\circ}C$, in combination with good law- and high temperature mechanical strength. Rencently, this material is also used widely in offshore processing piping in order to extend the maintenance term and improve the quality of anti-corrosion. In general, high quality weldments for this material are readily produced by commonly used processes. Not all processes are applicable to this material group, Ni-alloys. Metallurgical characterictics or the unavailability of matching, position or suitable welding processes. Nowadays, the flux cored wire is developed and applied for the better productivity in several welding position including the vertical position. in this study, the weldability and weldment characteristics (mechanical properties) of inconel 625 are considered in FCAW(Flux Core Arc Welding) associated with the several shielding gases($80\%Ar\;+\;20\%CO_2,\;50\%Ar+50CO_2,\;100CO_2$) in viewpoint of welding productivity.

  • PDF

Reduction of the Electric Field Concentration at the Triple Junction of the Vacuum Interrupter by Using the Application of Functionally Graded Material (기능성 경사 재료의 적용을 통한 진공 인터럽터의 삼중점 전계 완화)

  • Choi, Seung-Kil;Gu, Chi-Wuk;Ju, Heung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.630-635
    • /
    • 2015
  • A vacuum Interrupter (VI), a core part that composes the breaking part of medium-voltage vacuum circuit breaker (VCB), has the excellent insulation performance and arc-extinguishing capability. $SF_6$ gas had been used for the external insulation of VIs since the dielectric strength of $SF_6$ gas is superior to that of other insulation gases. However, because of environmental problems related with global warming, a solid-insulated technology was recently researched. The functionally graded material (FGM), as changing spatially the distribution of the relative permittivity inside an insulator, can reduce the electric field stress at the specific region. Especially, the external insulation performance of the VI with the molded FGM insulator is greatly improved as compared with that of the existing VI or the VI with a new external shield. In this paper, the effectiveness of this FGM insulator is verified by the numerical simulation.

A Study on the Characteristics of Inconel 625 for Casing and Tubing by FCAW Process (석유시추용 인코넬 625강의 FCAW용접 특성에 관한 연구)

  • Park, Keyung-Dong;Jin, Yonug-Beom;Park, Hyoung-Dong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.9-13
    • /
    • 2005
  • Inconel 625 is useful in variety of industrial applications because of the resistance to attack on various corrosive media at temperature from $200^{\circ}C$ to over $1090^{\circ}C$, in combination with good low and high temperature mechanical strength. Recently, this material is also used widely in offshore processing piping in order to extend the maintenance term and improvement the quality of anti-corrosion. In general, high quality weldments for this material are readily produced by commonly used processes. Not all processes are applicable to this material group, Ni-alloys. Metallurgical characteristics or the unavailability of matching, position or suitable welding process. Nowadays, the flux cored wire is developed and applied for the better productivity in several welding position including the vertical position. In this study, the weldability and weldment characteristics(mechanical properties) of inconel 625 are considered in FCAW(Flux Cored Arc Welding) associated with the severial shielding gases($80%Ar+20%CO_2,\;50%Ar+50%CO_2,\;100%CO_2$) in viewpoint of welding productivity.

Creep and creep crack growth behaviors for base, weld, and heat affected zone in a grade 91 weldment

  • Kim, Woo-Gon;Sah, Injin;Kim, Seon-Jin;Lee, Hyeong-Yeon;Kim, Eung-Seon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.572-582
    • /
    • 2021
  • This study investigated the creep and creep crack growth (CCG) behavior of the base metal (BM), weld metal (WM), and heat affected zone (HAZ) in a Gr. 91 weldment, which was made by a shield metal arc weld process. A series of tensile, creep, and CCG tests were performed for the BM, WM, and HAZ at 550 ℃. Creep behavior of the BM, WM, and HAZ was analyzed in terms of various creep laws; Norton's power-law, Monkman-Grant relation and damage tolerance factor (λ), and their constants were determined. In addition, each CCGR law for the BM, WM, and HAZ was proposed and compared in terms of a C*-fracture parameter. The WM and HAZ revealed faster creep rate, lower rupture ductility, and faster CCGRs than the BM, but they showed a similar behavior in the creep and CCG. The CCGRs obtained in the present study exhibited a marginal difference when compared with those of RCC-MRx of currently elevated design code in France. A creep crack path in the HAZ plane progressed towards a weak fine-grained HAZ adjacent to the BM.

A Feasibility Study on the Application of Self-Shielded Flux Cored Arc Welding Process for the On-Site Steel Bridge Box Fabrication (교량용 강재 박스의 현장 제조시 셀프실드 플럭스코어드 아크용접의 적용 타당성에 대한 연구)

  • Hwang, Yong-Hwa;Koh, Jin-Hyun;Oh, Se-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.122-128
    • /
    • 2005
  • A feasibility study on the application of self?shielded flux cored arc welding to the on-site SM520 steel bridge box fabrication for express trains and high way construction instead of gas-shield flux cored arc welding was conducted in terms of weld soundness, mechanical properties, toughness and microstructures. All welded specimens made with the self?shielded FCAW process were tested by magnetic particle and ultrasonic techniques and they were found to be sound. All multipass weld specimens made with both self-shielded and gas-shielded FCAW processes showed yield and tensile strengths of $462{\sim}549\;MPa$ and $548{\sim}640\;MPa$, respectively. The impact values of Charpy V-Notch weld specimens also met with the required value of 40J at $-20^{\circ}C$. The hardness values of the top area of weldments were higher than those of the bottom area because of higher residual stresses in the near surface. It was found that welding characteristics of SM520 steel by the on-site welding conditions with self-shielded FCAW showed almost equivalent to those by gas-shielded FCAW in terms of sound welds, mechanical properties and microstructure.

  • PDF