• Title/Summary/Keyword: Arc Chamber

Search Result 143, Processing Time 0.028 seconds

Pressure Rise in the Thermal Expansion Chamber With Arc (유부하시의 열팽창분사식 소호부내의 상승압력)

  • Park, K.Y.;Song, K.D.;Shin, Y.J.;Chang, K.C.;Kim, K.S.;Kim, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1344-1346
    • /
    • 1995
  • The interrupting capability of gas circuit breakers(GCB) are critically dependent on the pressure rise of the puffer cylinder or the thermal expansion chamber at current zero. Therefore it's very useful for the designers to know the pressure rise there at the design stage. Much effort has been done to predict the pressure rise in the puffer cylinder or the thermal expansion chamber in no-load condition. Thus, we now calculate it with reasonable accuracy with the simple programs coded by ourselves or with the commercial CFD packages. However, it has been still difficult problem to calculate it under the existence of arc. In this paper, we propose a method which can be used to predict the pressure rise in the thermal expansion chamber of thermal expansion type GCB. The method has been applied to the 25.8kV 25kA thermal expansion type model GCB and the calculated results have been compared with those from experiment.

  • PDF

The study for Improving Arc Extinction Capability of DC Magnetic Switch (직류전자 접촉기의 아크 소호력 향상)

  • Cho, Hyun-Kil;Lee, Eun-Woong;Lim, Su-Saeng;Lee, Hwa-Su;Sea, Jeong-Min;Kim, Gyun-Muk
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.888-890
    • /
    • 2002
  • We derived a theory of increasing electromagnetic force acting on arc column for reducing arcing time between electric contacts. A simulation method of arc velocity is presented by calculating blowout force using 3D FEM and drag acting on arc column. This paper is proposed 3 types arc extinguish chamber of different fulx path and is presented electromagnetic force and arc velocity of each model.

  • PDF

A Study on the Evaluation of Welding Fume Generated during Arc Welding (Arc 용접시 Fume 발생량 평가에 관한 연구)

  • 채현병;김정한;김희남
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.65-75
    • /
    • 1998
  • The cases of welders illness by welding fume generated during arc welding are recently reported, which makes the legal regulation in the welding work place. Also, this situation makes the employers and welders be concerned about the welding fume seriously. At this point of time it is necessary that a standard testing method is developed as a fundamental tool for the evaluation of Fume Generation Rate(FGR) required for making progress in the development of low fume electrodes and welding process technology and also constructing the ventilation system in welding area. However, the current standard(KS D 0062) is only applicable to the manual covered electrode arc welding. In this study the evaluation procedure for the FGR is established by developing the fume collection chamber which can be applicable to semiautomatic and automatic arc welding as well as manual arc welding. This evaluation system and procedure can be used as a tool not only to develop the low fume welding electrode and welding process technology but also to construct the equipment controlling the welding workshop atmosphere.

  • PDF

Experimental Study on Air Arcs Interruption Phenomena with Arc Quenching Materials (소호 재료에 따른 기중 아크 차단 현상의 실험적 연구)

  • Lee, S.Y.;Yeon, Y.M.;Park, H.T.;Oh, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1751-1753
    • /
    • 2002
  • Arc phenomena occur in the air, must be more diverse than vacuum and SF6. An air arc interruption method has been used in low rated voltage circuit breakers such as ACB, MCCB and MCB. Most of them have the arc chamber composed of arc chutes and lateral walls that made of many kinds of materials. Therefore, the criterion of material selection is necessary for breaking capacity improvement. So, we selected some contact and lateral wall materials, and carried out short circuit tests. Especially, some parameters of arc plasma properties were very different each polymeric wall material.

  • PDF

Control and Design of a Arc Power Supply for KSTAR's the Neutral Beam Injection

  • Ryu, Dong-Kyun;Lee, Hee-Jun;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.216-226
    • /
    • 2015
  • The neutral beam injection generate ultra-high temperature energy in the tokamak of nuclear fusion. The neutral beam injection make up arc power supply, filament power supply and acceleration & deceleration power supply. The arc power supply has characteristics of low voltage and high current. Arc power supply generate arc through constant output of voltage and current. So this paper proposed suitable buck converter for low voltage and high current. The proposed buck converter used parallel switch because it can be increased capacity and decrease conduction loss. When an arc generated, the neutral beam injection chamber occur high voltage. And it will break output capacitor of buck converter. Therefore the output capacitor was removed in the proposed converter. Thus the proposed converter should be designed for the characteristics of low voltage and high current. Also, the arc power supply should be guaranteed for system stability. The proposed parallel buck converter enables the system stability of the divided low output voltage and high current. The proposed converter with constant output be the most important design of the output inductor. In this paper, designed arc power supply verified operation of system and stability through simulation and prototype. After it is applied to the 288[kW] arc power supply for neutral beam injection.

Discharge Characteristics of a KSTAR NBI Ion Source

  • Chang Doo-Hee;Oh Byung-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.226-233
    • /
    • 2003
  • The discharge characteristics of a prototype ion source was investigated, which was developed and upgraded for the NBI (Neutral Beam Injection) heating system of KSTAR (Korea Superconducting Tokamak Advanced Research). The ion source was designed for the arc discharge of magnetic bucket chamber with multi-pole cusp fields. The ion source was discharged by the emission-limited mode with the control of filament heating voltage. The maximum ion density was 4 times larger than the previous discharge controlled by a space-charge-limited mode with fully heated filament. The plasma (ion) density and arc current were proportional to the filament voltage, but the discharge efficiency was inversely proportional to the operating pressure of hydrogen gas. The maximum ion density and arc current were obtained with constant arc voltage ($80{\sim}100V$), as $8{\times}10^{11}cm^{-3}$ and 1200 A, respectively. The estimated maximum beam current was about 35 A, extracted by the accelerating voltage of 80kV.

Arc Simulation of GCB Interrupter Using FEM (FEM을 이용한 가스차단기의 아크해석)

  • Mu, Jingwei;Park, K.Y.;Chong, J.K.;Choi, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.345-348
    • /
    • 1999
  • An arc model based on the N-S equations modified by adding an energy source term to take account of the arc is developed and solved using Taylor-Garlerkin FEM in the present paper. The numerical method is applied to the simulation of the opening procedure of a puffer type GCB. Moving boundary conditions of the arc chamber during operation is taken into account. Numerical predictions of the temperature profiles at different strokes are presented.

  • PDF

Analysis of the Fume Generation Rates in the Flux Cored Arc welding

  • Chae, H.B.;Kim, J.H.;Yang, S.C.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.71-77
    • /
    • 2001
  • The characteristics of the fume generation in a flux cored arc welding were investigated using the fume collection chamber developed. The Korean Standard concerning the method for the evaluation of the fume generation rate(FGR) was updated by the evaluation method obtained through this study. It was found that the effect of humidity in the test environment should be considered and the automatic welding method had to be employed for the purpose of the exact evaluation of the fume generation rate. The results showed that the fume generation rate was influenced by the welding parameters. The important factors were the welding current arc voltage, travel speed, and contact tip to work distance(CTWD) that affected the heat input as well as the torch angle and the shielding gas flow rate that influenced the shielding effect. The fume generation rate increased as the heat input increased and the shielding effect decreased. It was also observed that the effect of the welding current is much grater than the other welding parameters.

  • PDF

Effects of a Flow Guide on the Arcing History in a Thermal Puffer Plasma Chamber (유동 가이드가 열파퍼 플라즈마 챔버의 아크현상 이력에 미치는 영향)

  • Lee, Jong-Chul;Kim, Youn-Jea
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.832-839
    • /
    • 2007
  • The geometry and dimensions of an expansion chamber are decisive factors in thermal puffer plasma chamber designs. Because they together dominate the temperature and speed at which the cooling gas from the chamber flows back through a flow channel to the arcing zone for the successful interruption of fault currents. In this study, we calculated the flow and mass transfer driven by arc plasma, and investigated the effects of a flow guide installed inside a thermal puffer plasma chamber. It is found that the existing cold gas of the chamber mixes with hot gases entrained from the arcing zone and is subjected to compression due to pressure build-up in the chamber. The pressure build-up with the flow guide is larger than that without due to a vortex which rotates clockwise around the chamber center. By the reverse pressure gradient, the mixing gas of the chamber flows back out for cooling down the residual plasma near current zero. In the case with the flow guide, the temperature just before current zero is lower than that without, and the Cu concentration with high electrical conductivity is also less than that without the flow guide.

A Comparison of Energy Loss Characteristics between Radial and Axial Magnetic Field Type Vacuum Switches (대전력 펄스용 횡자계형 및 종자계형 진공스위치의 에너지 손실 특성 비교)

  • 이태호;허창수;이홍식
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.3
    • /
    • pp.130-136
    • /
    • 2003
  • Crowbar system Vacuum switches, widely used In a pulsed power system, could use the magnetic force to prevent the electrode damage. Vacuum switches using the magnetic forces are classified roughly into RMF(Radial Magnetic Field) and AMF(Axial Magnetic Field) type. The RMF type switches restrain a main electrode from aging due to high temperature and high density arc by rotating the arc which is driven by the Lorenz force. The AMF type switches generate axial magnetic field which decreases the electrode damage by diffusing arc. In this paper, we present the energy loss characteristics of both RMF and AMF type switches which are made of CuCr(75:25 wt%) electrodes. The time-dependent dynamic arc resistance of high-current pulsed discharge in a high vacuum chamber(~10$^{-6}$ Torr). which occurs in RMF and AMF type switches, was obtained by solving the circuit equation using the measured values of the arc voltage and current. In addition, we compared energy loss characteristics of both switches. Based on our results, it was found that the arc voltage and the energy loss of an AMF type switch are lower than a RMF type switch.