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Arc Simulation of GCB Interrupter Using FEM
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Abstract
An arc model based on the N-S equations modified

by adding an energy source term to take account of
the arc is developed and solved using Taylor-Garlerkin
FEM in the present paper. The numerical method is
applied to the simulation of the opening procedure of
a puffer type GCB. Moving boundary conditions of the
arc chamber during operation is taken into account.
Numerical predictions of the temperature profiles at
different strokes are presented.
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1. Introduction

Considerable efforts have been made on the computer

simulation of arc dynamics in the interrupter of SF6
GCB in recent years. Two main categories can be
identified among them. One is the application of
commercial CFD package, the majority of which is
based on the finite volume method such as
PHOENICS{1]. The other is the use of self-programmed
code, which adopt finite volume method[2}, FLIC[3] or
any other finite difference methods.

An arc model based on the Navier-stokes equations
for compressible flow including an energy source term
which takes into account the ohmic heating and
radiation is developed in the presented paper. The
numerical method adopts the Taylor-Garlerkin finite
element method (FEM). The main feature of this
numerical method is that, in time domain it adopts
finite difference method and in spatial domain
Garlerkin FEM is applied. The advantage of Taylor-
Garlerkin method lies on the fact that less computer
memory is needed in this method, which makes it
possible to solve time evolution problems using FEM
with an ordinary PC.

The numerical method is applied on the simulation
of the contact separation procedure of a 72.5kV, 25kA
puffer type GCB. The moving boundary condition for
a puffer type interrupter is taken into account by
subdividing the stroke into 10 steps. The stroke curve
is obtained from the experiment. The numerical
predictions of temperature profiles at different instant,
that is different strokes, are presented.

2. Governing Equations

The governing equations are based on Navier-Stokes
equations with an energy source term to take into
account the arcing effect. The axisymmetric N-S
equations are given by
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in which p is the gas density, u and v the axial and
radial fluid velocity, p the pressure, T the temperature,
# the viscous coefficient, k is the coefficient of the
heat transfer.
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e is the internal energy, which is given by

e=c:/T~l-—;~(u2 +v?) @

All the thermodynamic and physical properties of
equilibrium SF6 are taken from Frost and Liebermann
{41

Source term

Q= oE? — U pet 3

Where is the electrical conductivity of the plasma,
E the potential gradient of the arc column and Unet is
the net emission from the arc core. Unet can be
expressed as a function of arc radius R, temperature
T and pressure P, which can be obtained from Ref[5].

To enclose the equations we should add Ohms Law
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and the equation of state

p=p(p, T) 5)

In the present calculation, the temperature may
reach a much high level, in which SF6 can no longer
be regarded as ideal gas. This equation of state is a
revised onef4].

3. Numerical Method

The above governing equations are solved using
Taylor-Garlerkin FEM[6]. In the time domain it
adopts finite difference scheme, but in the spatial
domain Garlerkin FEM is applied.

(1) Time discretization
Two-step Taylor series is applied to the time
discretization.
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(2) Garlerkin finite element approximation

The spatial discretization is also for two steps,
corresponding to the two-step time discretization.
Step 1: Partial average interpolation function is applied
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where Ue"*”z is the average of U for the half step

in the element of (,, p is the partial average
interpolation function.

Step 2 ©  According to the Garlerkin finite element
method, let the inner product of the residual and the
weight function to be zero, yield
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By applying the Gauss-Green theorem, we get
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where [, is the boundary of Qe,_il: and Z: is the

unit normal and tangential vector respectively.

4. Results and Discussions

The numerical method is applied to the simulation
of the contact separation procedure of a 72.5kV, 25kA
puffer type GCB.

During the contact separation of a puffer type
GCB, the moving contact and the cylinder on which
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the nozzle is fixed on are driven by the operating
mechanism. The geometry of the arc chamber
changes all the time. That means the calculation
domain changes at the meanwhile. The treatment of
moving boundary is simplified by making the moving
contact fixed and moving the stationary contact and
piston in a reverse direction. The opening stroke is
divided into 10 steps. At each step the boundary is
regarded as fixed and the speed of the piston is
constant.

The computed result of the former step is
interpolated to the domain of the next step as an
initial condition. The computation begins from the
pre-compression stage which is before the separation
of the contacts. In this case, temperature of 300K and
pressure of 0.6MPa is assumed everywhere of the arc
chamber as the initial condition for the first step of
cold gas flow. At the very beginning of the step just
after the separation of the contacts, a temperature
which is just above the ionized temperature of SF6
plasma, for example 4000-5000K, is imposed at the
elements on the axis between the contacts to simulate
the ignition of the arc.

The stroke curve is obtained from the experiment.
In the present computation, the interrupting current is
25kA, arcing time 16.67ms(1 cycle).

T (1000K)

Figurel Temperature distribution (¢ =05x)

T (1000K)

Figure2 Temperature distribution (¢=087)

T (1000K)

Figure3 Temperature distribution (¢=1.27)

T (1000K)
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Figured Temperature distribution (¢=157)

Figure 1 to figure 6 are the time evolution of the
temperature profiles in the arc chamber during the
contact separation.

In the period of the first half cycle of current, the
nozzle is blocked by the stationary contact. Hot gas
exhausts from the moving contact pipe. The
temperature of the arc core reaches more than
24000K, as shown in figure 1 and 2. After the
stationary contact moves out of the nozzle throat
(figure 3 and 4), one can find that the nozzle is
clogged by hot gas with temperatures above 6000K,
during the most time of the second half cycle of
current. This is known as arc clogging, which is
usually utilized to elevate the pressure of the puffer
chamber.

One of the important purposes to simulate the arc
in the large current phase is to provide accurate
initial conditions for the study of the phenomena in
the post arc period Figure 5 illustrates the
temperature distribution at the current zero.

From the data of Frost and Liebermann[4], the SF6

is nonconductive below the temperature of 4000K.
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Figure 6 shows that at the current zero there is a
very slender current conducting channel (the column
enclosed by the isothermo line .of 4000K) at the axis
between the two arcing contacts. The conducting
channel has the thinnest diameter and lowest
temperature at the throat of the nozzle, which
indicates that this region plays an important role in
the thermal recovery of the SF6 interrupter.

T(1000K)

Figureb Temperature distribution (¢ =2.07;)

5. Conclusions

1. The arc model based on the N-S equation of gas
dynamics was solved using Taylor-Garlerkin FEM.
The numerical method was applied to the simulation
of the operation of a puffer type GCB.

2. The numerical solutions show that arc clogging
takes effect at the most time of the large current
phase,

3. The present work provides an accurate initial
condition for the further study of the post arc
phenomena.
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