• 제목/요약/키워드: Arbitrary shape

Search Result 345, Processing Time 0.019 seconds

The Water Wave Scattering by the Marine Structure of Arbitrary Shape (임의 형태의 해양구조물에 의한 해수파의 산란)

  • 신승호;이중우
    • Journal of the Korean Institute of Navigation
    • /
    • v.17 no.1
    • /
    • pp.61-78
    • /
    • 1993
  • Large offshore structure are to be considered for oil storage facilities , marine terminals, power plants, offshore airports, industrial complexes and recreational facilities. Some of them have already been constructed. Some of the envisioned structures will be of the artificial-island type, in which the bulk of structures may act as significant barriers to normal waves and the prediction of the wave intensity will be of importance for design of structure. The present study deals wave scattering problem combining reflection and diffraction of waves due to the shape of the impermeable rigid upright structure, subject to the excitation of a plane simple harmonic wave coming from infinity. In this study, a finite difference technique for the numerical solution is applied to the boundary integral equation obtained for wave potential. The numerical solution is verified with the analytic solution. The model is applied to various structures, such as the detached breakwater (3L${\times}$0.1L), bird-type breakwater(318L${\times}$0.17L), cylinder-type and crescent -type structure (2.89L${\times}$0.6L, 0.8L${\times}$0.26L).The result are presented in wave height amplification factors and wave height diagram. Also, the amplification factors across the structure or 1 or 2 wavelengths away from the structure are compared with each given case. From the numerical simulation for the various boundary types of structure, we could figure out the transformation pattern of waves and predict the waves and predict the wave intensity in the vicinity of large artificial structures.

  • PDF

Numerical Simulation of Laminar Flows for a Circular Cylinder Vertically Piercing Free Surface (수직원통 주위의 자유표면 층류운동의 수치해석)

  • Bum-Sang Yoon;Yoon-Ho Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.104-114
    • /
    • 1993
  • In this paper, effects of free surface on viscous flow is investigated. Continuity equation coupled with Navier-Stokes equations are solved numerically by using an artificial compressibility method[1, 2]. The body-fitted generalized curvilinear coordinate system is employed to deal with arbitrary body shape. The IAF scheme with finite difference method is used to solve the equations, and a diagonal algorithm is applied to time-varying Jacobian matrices for the computational economics. Free surface shape is obtained by applying zero pressure condition to still water surface at each time step. A numerical test is made for larminar flow around a circular cylinder vertically piercing the free surface. Computed flow patterns are largely affected by the existance of free surface in low Reynolds number flows treated in this paper. Free surface causes viscous pressure drag to vary much in depth direction in accordance with the variations of flow pattern.

  • PDF

A comparison study of water impact and water exit models

  • Korobkin, Alexander;Khabakhpasheva, Tatyana;Malenica, Sime;Kim, Yonghwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1182-1196
    • /
    • 2014
  • In problems of global hydroelastic ship response in severe seas including the whipping problem, we need to know the hydrodynamic forces acting on the ship hull during almost arbitrary ship motions. In terms of ship sections, some of them can enter water but others exit from water. Computations of nonlinear free surface flows, pressure distributions and hydrodynamic forces in parallel with the computations of the ship motions including elastic vibrations of the ship hull are time consuming and are suitable only for research purposes but not for practical calculations. In this paper, it is shown that the slamming forces can be decomposed in two components within three semi-analytical models of water entry. Only heave motion is considered. The first component is proportional to the entry speed squared and the second one to the body acceleration. The coefficients in these two components are functions of the penetration depth only and can be precomputed for given shape of the body. During the exit stage the hydrodynamic force is proportional to the acceleration of the body and independent of the body shape for bodies with small deadrise angles.

A Study on the Improvement of Numerical Thermal Analysis for Steel Welds (철강 용접부 열해석 정도 향상에 관한 연구)

  • Kang, Youn-Hee;Kim, Choong-Myeong;Hong, Hyun-Uk;Lee, Jong-Bong
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.36-44
    • /
    • 2007
  • This paper is the first part of the study on the accuracy improvement of numerical analysis of steel welds. The aim of this paper is to raise the accuracy of thermal analysis results, such as the shape and size of the weld cross section and the hardness distribution in HAZ(Heat-Affected Zone). It is known that the factors affecting on the accuracy are thermal properties, metallurgical properties and welding heat source model. It was found that the arbitrary distributed heat source model should be used to predict practical weld cross section shape and size. Also, in order to improve the prediction accuracy of HAZ hardness distribution, it was essential to consider 2 CCT(Continuous Cooling Transformation) diagrams in calculating volume fraction of transformed phases. One is the peak temperature being around melting temperature. The other is the peak temperature being around metallurgical transformation temperature.

The modal characteristics of non-uniform multi-span continuous beam bridges

  • Shi, Lu-Ning;Yan, Wei-Ming;He, Hao-Xiang
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.997-1017
    • /
    • 2014
  • According to the structure characteristics of the non-uniform beam bridge, a practical model for calculating the vibration equation of the non-uniform beam bridge is given and the application scope of the model includes not only the beam bridge structure but also the non-uniform beam with added masses and elastic supports. Based on the Bernoulli-Euler beam theory, extending the application of the modal perturbation method and establishment of a semi-analytical method for solving the vibration equation of the non-uniform beam with added masses and elastic supports based is able to be made. In the modal subspace of the uniform beam with the elastic supports, the variable coefficient differential equation that describes the dynamic behavior of the non-uniform beam is converted to nonlinear algebraic equations. Extending the application of the modal perturbation method is suitable for solving the vibration equation of the simply supported and continuous non-uniform beam with its arbitrary added masses and elastic supports. The examples, that are analyzed, demonstrate the high precision and fast convergence speed of the method. Further study of the timesaving method for the dynamic characteristics of symmetrical beam and the symmetry of mode shape should be developed. Eventually, the effects of elastic supports and added masses on dynamic characteristics of the three-span non-uniform beam bridge are reported.

Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.649-661
    • /
    • 2017
  • This paper is motivated by the lack of studies in the technical literature concerning to the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) plate has smooth variation of CNT fraction based on the power-law distribution in the thickness direction, and the material properties are also estimated by the extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Parametric studies are carried out to highlight the influence of CNTs volume fraction, waviness and aspect ratio, boundary conditions and elastic foundation on vibrational behavior of FG-CNT thick sectorial plates. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. For an overall comprehension on 3-D vibration of annular sector plates, some mode shape contour plots are reported in this research work.

Beam pattern analysis for beam homogenization of conformal array sonar (곡면 배열 소나의 빔 균일화를 위한 빔 패턴 분석)

  • Jeong-Ung, Choi;Wooyoung, Hong;Jun-Seok, Lim;Keunhwa, Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.637-646
    • /
    • 2022
  • Sub-arrays of arbitrary conformal array have different geometric shape through steering direction, thus the beam patterns of sub-arrays are always non-uniform. In this paper, we apply the beam pattern synthesis method using convex optimization into the conformal array, and shows the improvement of uniformity of beam performance. The simulation is performed with the conformal array of cut-sphere shape. As a result, the standard deviation of 3 dB beamwidth in elevation is greatly reduced but the directivity index is also reduced. To alleviate this trade-off, we propose a convex optimization using a shading function.

Dispersion Pattern Simulation of Tungsten Impactors According to Mass and Shape of Explosives (폭약 질량과 형상에 따른 텅스텐 충격자의 분산 패턴 시뮬레이션)

  • Sakong, Jae;Woo, Sung-Choong;Bae, Yong-Woon;Choi, Yeoun-Jin;Cha, Jung-Phil;Ga, In-Han;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1325-1333
    • /
    • 2014
  • The dispersion pattern of a near miss neutralizer has a great effect on the disablement of a threatening projectile. This study numerically investigated the dispersion pattern of cylindrical tungsten impactors by an explosion in the near miss neutralizer. The mass and shape of the explosive were considered as influencing factors on the dispersion pattern. The explosives were set using two shape models: a parallel shape with the same upper and lower thicknesses and a tapered shape with different upper and lower thicknesses. In the simulation results, the dispersed impactors formed a ring-shaped pattern on a two-dimensional plane in an arbitrary space. In addition, the fire net area increased with the explosive mass when the explosive shapes were identical. In particular, the tapered shape explosive formed a larger fire net area than the parallel shape explosive. Based on the analysis of the fire net area along with the dispersion density, both the explosive mass and shape representing the physical characteristics should be considered for controlling the dispersion pattern of impactors in a near miss neutralizer.

Analysis of cross slotted waveguide antenna using Spatial Network Method (공간회로망법을 이용한 크로스 슬롯 도파관 안테나 해석)

  • Park, Kyoung-Su;Choi, Sung-Youl;Kim, Jin;Lee, Hee-Bock;Ko, Young-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.493-496
    • /
    • 2000
  • This paper presents a slotted leaky waveguide antenna using a rectangular waveguide for mobile reception of DBS (Direct Broadcasting Satellite). A slotted rectangular waveguide in leaky-wave operation can obtain a large beam-tilting angle of 45$^{\circ}$, which is an attractive candidate of mobile DBS receiving antennas because it can be installed horizontally. SNM is used to solve arbitrary shape and materials constant, derived from maxwell's equations. In this paper, analyze cross slot waveguide antenna using SNM. and verify by HFSS.

  • PDF

Blank Design for Optimized Thickness Distribution for Axi-symmetric Superplastic Blow Forming (축대칭 초소성 블로성형의 두께분포 최적화를 위한 블랭크 설계)

  • 이정민;홍성석;김용환
    • Transactions of Materials Processing
    • /
    • v.8 no.1
    • /
    • pp.92-100
    • /
    • 1999
  • A procedure is proposed for determining the initial thickness distribution in oder to produce a specified final thickness distribution for the axisymmetrical superplastic blow forming processes. Weighted parameter is introduced to improve the simple ad $d_traction method and the initial blank thickness distribution is obtained by optimizing the weighted parameter. This method is applied to superplastic free bulging process with the uniform thickness distribution of final shape to confirm its validity. The optimum initial blank thickness distributions is obtained from arbitrary axisymmetrical superplastic blow forming processes such as dome, cone and cylindrical cup forming with die contact. It is concluded that the ad $d_traction method with weighted parameter is an effective method for an optimum blank thickness distribution design.esign.

  • PDF