• 제목/요약/키워드: Arabidopsis thaliana

검색결과 350건 처리시간 0.03초

수은과 비소가 애기장대의 생장에 미치는 영향 (Effects of Mercury and Arsenic on Growth of Arabidopsis thaliana)

  • 박종범
    • 한국환경과학회지
    • /
    • 제15권2호
    • /
    • pp.157-162
    • /
    • 2006
  • This experiment was carried out to investigate the effects of mercury and arsenic on the growth of Arabidopsis thaliana when treated with three different concentrations. When treated with mercury, there was no noticeable difference in the growth of the plant between the group treated with $0.5\;{\mu}g/L$ (the effluent standard established by the Ministry of Environment) and the group treated with the concentration 100 times higher. They both showed almost the same level of growth as that of the normal plant. But the group of the concentration 10 times higher showed significantly $10\%$ more growth compared with the normal plant. When treated with arsenic, the three different groups all showed a little more growth compared with the normal plant. Interestingly, the group of the concentration 10 times higher than the official standard concentration of arsenic $(50\;{\mu}g/L)$ showed the highest level of growth, significantly $20\%$ more than the normal plant. These results show that some amount of mercury and arsenic in the soil do not have much effect on the growth of Arabidopsis thaliana, and that optimum concentrations of mercury and arsenic can even stimulate the growth of the plant.

애기장대의 종자 발아에 미치는 맥반석과 녹차의 중금속 제거 효과 (Removal Effect of Biostone and Green Tea on the Heavy Metal Toxicity during Seed Germination of Arabidopsis thaliana)

  • 박종범
    • 한국환경과학회지
    • /
    • 제12권12호
    • /
    • pp.1303-1308
    • /
    • 2003
  • This experiment was carried out to investigate the effects of heavy metals (cadmium, chromium, copper and lead) on the seed germination of Arabidopsis thaliana, and examinated the removal effects of biostone and green tea on the heavy metal toxicity. Cadmium and chromium among the four heavy metals had no effect on the seed germination even in the concentration fifty times higher than in the official standard concentration of pollutant exhaust notified by the Ministry of Environment. However, seeds were not germinated in the concentration of copper ten times higher and in the concentration of lead fifty times higher than the official standard concentration. When seeds were sown in the solutions of lead (15, 20, 25 and 30 mg/L) and copper(15 and 20 mg/L), the seed germination rates were 0% and less than 10%, respectively. However, when biostone(3 g/30 $m\ell$) was added, the seed germination rate was 100% in all the concentrations. The germination rate was 100% in distilled water and copper solution (5 mg/L). However, green tea (0.2 g/30 $m\ell$) was added, the seed germination rate was 0% in both. The results show that cadmiun and chromium had no effect on the seed germination, but lead and copper decreased the rate of seed germination of Arabidopsis thaliana, Biostone removed heavy metal toxicity, but green tea did not removed heavy metal toxicity during germination.

Glutathione S-Transferase Activities of S-Type and L-Type Thioltransferases from Arabidopsis thaliana

  • Cho, Young-Wook;Park, Eun-Hee;Lim, Chang-Jin
    • BMB Reports
    • /
    • 제33권2호
    • /
    • pp.179-183
    • /
    • 2000
  • The glutathione S-transferase (GST) activities of S-type and L-type thioltransferases (TTases), which are purified from the seeds and leaves of Arabidopsis thaliana, respectively, were identified and compared. The S-type and L-type TTases showed $K_m$ values of 9.72 mM and 3.18mM on 1-chloro-2,4-dinitrobenzene (CDNB), respectively, indicating the L-type TTase has higher affinity for CDNB. The GST activity of the L-type TTase was rapidly inactivated after being heated at $70^{\circ}C$ or higher. The GST activity of the S-type TTase remains active in a range of $30-90^{\circ}C$. $Hg^{2+}$ inhibited the GST activity of the S-type TTase, whereas $Ca^{2+}$ and $Cd^{2+}$ inhibited the GST activity of the L-type TTase. Our results suggest that the GST activities of two TTases of Arabidopsis thaliana may have different catalytic mechanisms. The importance of the co-existence of TTAse and GST activities in one protein remains to be elucidated.

  • PDF

An L-Type Thioltransferase from Arabidopsis thaliana Leaves

  • Kim, Tae-Soo;Cho, Young-Wook;Kim, Joon-Chul;Jin, Chang-Duck;Han, Tae-Jin;Park, Soo-Sun;Lim, Chang-Jin
    • BMB Reports
    • /
    • 제32권6호
    • /
    • pp.605-609
    • /
    • 1999
  • Thioltransferase, also called glutaredoxin, is a general GSH-disulfide reductase of importance for redox regulation. Previously, the protein thioltransferase, now called S-type thioltransferase, was purified and characterized from Arabidopsis thaliana seed. In the present study, a second thioltransferase, called L-type thioltransferase, was purified to homogeneity from Arabidopsis thaliana leaves. The purification procedures included DEAE-cellulose ion-exchange chromatography, Sephadex G-50 gel filtration, and glutathione-agarose affinity chromatography. The purified enzyme was confirmed to show a unique band on SDS-PAGE and its molecular weight was estimated to be 26.6 kDa, which appeared to be atypical compared with those of most other thioltransferase. It could utilize 2-hydroxyethyl disulfide, S-sulfocysteine, and insulin as substrates, and also contained dehydroascorbate reductase activity. Its optimum pH was 8.5 and its activity was greatly activated by L-cysteine. When it was kept for 30 min, it appeared to be very stable up to $70^{\circ}C$. It was activated by $MgCl_2$ and, on the contrary, inhibited by $ZnCl_2$, $MnCl_2$, and $AlCl_3$.

  • PDF

이광자현미경 여기 광 파장에 따른 Arabidopsis thaliana 촬영 깊이 및 엽록체 형광 스펙트럼의 변화 (Variations of imaging depth and chloroplast emission spectrum of Arabidopsis thaliana with excitation wavelength in two-photon microscopy)

  • 주용준;손시형;김기현
    • 한국가시화정보학회지
    • /
    • 제12권3호
    • /
    • pp.9-14
    • /
    • 2014
  • Two-photon microscopy (TPM) has been used in plant research as a high-resolution high-depth 3D imaging modality. However, TPM is known to induce photo-damage to the plant in case of long time exposure, and optimal excitation wavelength for plant imaging has not been investigated. Longer excitation wavelength may be appropriate for in vivo two-photon imaging of Arabidopsis thaliana leaves, and effects of longer excitation wavelength were investigated in terms of imaging depth, emission spectrum. Changes of emission spectrum as a function of exposure time at longer excitation wavelength were measured for in vivo longitudinal imaging. Imaging depth was not changed much probably because photon scattering at the cell wall was a limiting factor. Chloroplast emission spectrum showed its intensity peak shift by 20 nm with transition of excitation wavelength from 849 nm or below to 850 nm or higher. Emission spectrum showed different change patterns with excitation wavelengths in longitudinal imaging. Longer excitation wavelengths appeared to interact with chloroplasts differently in comparison with 780 nm excitation wavelength, and may be good for in vivo imaging.

중금속이 애기장대의 생장과 종자발아에 미치는 영향 (Effects of Heavy Metals on Growth and Seed Germination of Arabidopsis thaliana)

  • 박영숙;박종범
    • 한국환경과학회지
    • /
    • 제11권4호
    • /
    • pp.319-325
    • /
    • 2002
  • This experiment was carried out to investigate the effects of heavy metals (copper, cadmium, lead and chrome) on the growth of plant and seed germination of Arabidopsis thaliana treated with various concentrations of heavy metals. Cadmium and chrome among the 4 heavy metals had no effect on the growth of stem even in the concentration fifty times higher than the official standard concentration of pollutant exhaust notified by the Ministry of Environment. The official standard concentration of cadmium, however, stimulated the growth of stem in general, increasing leaf size and surface area, although it had no effect on the length of stem. But the growth of stem was decreased about 18% in the official standard concentration of pollutant exhaust of lead and copper. There was no growth of root in the concentration of lead and copper ten times higher than the official standard concentration. Cadmium and chrome had no effect on the seed germination, but lead and copper decreased the rate of seed germination. Seeds were not germinated in the concentration of copper ten times higher than the official standard concentration and in the concentration of lead fifty times higher than the official standard concentration. From this research three peculiar results were obtained. Chrome in the soil did not have much effect on the plant growth and seed germination of Arabidopsis thaliana. Cadmium stimulated the stem growth in an optimum concentration. But lead and copper reduced the plant growth and seed germination even in a small concentration, especially copper had the worse effect.

Structural Roles of Cysteine 50 and Cysteine 230 Residues in Arabidopsis thaliana S-Adenosylmethionine Decarboxylase

  • Park, Sung-Joon;Cho, Young-Dong
    • BMB Reports
    • /
    • 제35권2호
    • /
    • pp.178-185
    • /
    • 2002
  • The Arabidopsis thaliana S-Adenosylmethionine decarboxylase (AdoMetDC) cDNA ($GenBank^{TM}$ U63633) was cloned. Site-specific mutagenesis was performed to introduce mutations at the conserved cysteine $Cys^{50}$, $Cys^{83}$, and $Cys^{230}$, and $lys^{81}$ residues. In accordance with the human AdoMetDC, the C50A and C230A mutagenesis had minimal effect on catalytic activity, which was further supported by DTNB-mediated inactivation and reactivation. However, unlike the human AdoMetDC, the $Cys^{50}$ and $Cys^{230}$ mutants were much more thermally unstable than the wild type and other mutant AdoMetDC, suggesting the structural significance of cysteines. Furthermore, according to a circular dichroism spectrum analysis, the $Cys^{50}$ and $Cys^{230}$ mutants show a higher a-helix content and lower coiled-coil content when compared to that of wild type and the other mutant AdoMetDC. Also, the three-dimensional structure of Arabidopsis thaliana AdoMetDC could further support all of the data presented here. Summarily, we suggest that the $Cys^{50}$ and $Cys^{230}$ residues are structurally important.

Arabidopsis thaliana의 엽육세포 원형질체배양에 미치는 칼슘이온의 영향 (Effect of Calcium Ion on Mesophyll Protoplast Culture of Arabidopsis thaliana)

  • 박현용
    • 식물조직배양학회지
    • /
    • 제22권5호
    • /
    • pp.277-281
    • /
    • 1995
  • 칼슘이온의 농도가 Arabidopsis thaliana의 원형질체배양에 미치는 영향을 조사하기 위해 Arabidopsis thaliana의 원형질체를 분리하여 서로 다른 농도의 CaCl$_2$를 첨가한 IMH 배지에서 배양하면서 나타나는 현상을 관찰하였다. 대조군과 12.5 mM 이하의 농도에서는 배양세포들이 심하게 액포화되었으며 세포분열은 관찰되지 않았다. 0-50 mM 범위의 농도에서는 농도의 증가와 비례하여 세포의 액포화가 적었으며 이에 반하여 plasma rich cell의 비율은 높아졌다. 세포분열의 유도는 25 mM 이상의 농도에서 관찰되었고 50mM에서 가장 높은 평판효율(5-6%)을 나타내었다. 그러나 100 mM 이상의 농도에서는 뚜렷한 저해효과를 나타내었다. 칼슘이온의 투여 시기가 세포분열과 콜로니 형성과정에 미치는 영향을 조사하기 위하여 서로 다른 농도의 칼슘이온을 각각 원형질체 분리용액과 배양액에 투여하고 배양한 결과, 투여 시기에 따른 영향은 콜로니의 형성과정에 다소 차이를 보였다. 이처럼 높은 칼슘 농도가 원형질체 배양시 요구되는 것은 원형질체가 배지로부터 생장조절물질을 흡수하여 재분화하는 과정에서 칼슘이온이 중요한 조절작용을 하기 때문인 것으로 추측된다.

  • PDF

CAPS marker에 의한 Arabidopsis의 자외선 B 감수성 유전자 지도작성 (Mapping of UV-B sensitive gene in Arabidopsis by CAPS markers)

  • 박홍덕;김종봉
    • 생명과학회지
    • /
    • 제12권6호
    • /
    • pp.715-720
    • /
    • 2002
  • Arabidopsis thaliana columbia의 종자에 EMS를 처리하여 돌연변이체들을 만들었고 이중 UV-B에 감수성이 높은 돌연변이체를 골랐다. 이 UV-B 감수성 돌연변이체의 원인 유전자를 밝히기 위하여 교배 실험을 한 결과 이는 Mendel 유전법칙을 따르고 단일 유전자의 돌연변이에 의하여 나타나며 열성 유전을 하는 것으로 밝혀져 이 유전자를 uvs라 하였다. 염색체상의 uvs의 위치를 밝히기 위하여 CAPS maker를 이용한 연관분석을 하고자 하였고 이를 위하여 각각 maker의 primer 10종류를 제작하였다. 이를 이용, 각 PCR 산물에 대하여 uvs mutant와는 다른 제한효소 pattern를 갖는 Lansberg와 uvs mutant를 교배시켜서 얻은 것들로부터 DNA를 추출하여 PCR을 수행하였다. 이들과 자외선과의 감수성을 연관시켜 교차율을 계산한 결과 5번 염색체의 LFY3과 가장 가까웁게 연관되어 있었다.