DOI QR코드

DOI QR Code

Structural Roles of Cysteine 50 and Cysteine 230 Residues in Arabidopsis thaliana S-Adenosylmethionine Decarboxylase

  • Park, Sung-Joon (Department of Biochemistry, College of Science, Yonsei University) ;
  • Cho, Young-Dong (Department of Biochemistry, College of Science, Yonsei University)
  • Published : 2002.03.31

Abstract

The Arabidopsis thaliana S-Adenosylmethionine decarboxylase (AdoMetDC) cDNA ($GenBank^{TM}$ U63633) was cloned. Site-specific mutagenesis was performed to introduce mutations at the conserved cysteine $Cys^{50}$, $Cys^{83}$, and $Cys^{230}$, and $lys^{81}$ residues. In accordance with the human AdoMetDC, the C50A and C230A mutagenesis had minimal effect on catalytic activity, which was further supported by DTNB-mediated inactivation and reactivation. However, unlike the human AdoMetDC, the $Cys^{50}$ and $Cys^{230}$ mutants were much more thermally unstable than the wild type and other mutant AdoMetDC, suggesting the structural significance of cysteines. Furthermore, according to a circular dichroism spectrum analysis, the $Cys^{50}$ and $Cys^{230}$ mutants show a higher a-helix content and lower coiled-coil content when compared to that of wild type and the other mutant AdoMetDC. Also, the three-dimensional structure of Arabidopsis thaliana AdoMetDC could further support all of the data presented here. Summarily, we suggest that the $Cys^{50}$ and $Cys^{230}$ residues are structurally important.

Keywords

References

  1. Dieffenbach, C. W. and Dveksler, G. S. (1995) PCR Primer: A Laboratory ManuaI, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  2. Dresselhaus, T., Barcelo, P., Hagel, C., Lorz, H. and Humbeck, K. (1996) Isolation and characterization of a Tritordeum cDNA encoding S-adenosylmethionine decarboxylase that is circadian-clock- regulated. Plant. Mol. BioI. 30, 1021-1033. https://doi.org/10.1007/BF00020812
  3. Ekstrom, J. L., Mathews, I. I., Stanley, B. A., Pegg, A. E. and Ealick, S. E. (1999) The crystal structure of human S-adenosylmethionine decarboxylase at 2.25 A resolution reveals a novel fold. Structure 7, 583-595. https://doi.org/10.1016/S0969-2126(99)80074-4
  4. Guex, N. and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714-2723. https://doi.org/10.1002/elps.1150181505
  5. Heby, O. and Persson, L. (1990) Molecular genetics of polyamine synthesis in eukaryotic cells. Trends. Biochem. Sci. 15, 153-158. https://doi.org/10.1016/0968-0004(90)90216-X
  6. Jones, D. T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195-202. https://doi.org/10.1006/jmbi.1999.3091
  7. Kim, S. I., Kim, S. J., Leem, S. H., Oh, K. H., Kim, S. H. and Park, Y. M. (2001) Site-directed mutagenesis of two cysteines (155, 202) in catechol 1,2-dioxygenase $I_1$ of Acinetobacter lwoffii K24, J. Biochem. Mol. Biol. 34, 172-175.
  8. Lee, J. E. and Cho, Y. D. (1993a) Studies on the active site of the ${\gamma}$-aminobutylaldehyde Dehydrogenase. Korean Biochem. J. (presently J. Biochem. Mol. BioI.) 26, 1-7.
  9. Lee, K. J. and Cho, Y. D. (1993b) Chemical modification of catalytically essential residues of rat placenta transamidinase, Korean Biochem. J. (presently J. Biochem. Mol. Biol.) 26, 733-740.
  10. Lee, M. M., Lee, S. H. and Park, K. Y. (1997) Characterization and expression of two members of the S-adenosylmethionine decarboxylase gene family in carnation flower. Plant. Mol. BioI. 34, 371-382. https://doi.org/10.1023/A:1005811229988
  11. Mad Arif, S. A., Taylor, M. A., George, L. A., Butler, A. R., Burch, L. R., Davies, H. V., Stark, M. J. and Kumar, A. (1994) Characterization of the S-adenosylmethionine decarboxylase gene of potato. Plant. Mol. Biol. 26, 327-338. https://doi.org/10.1007/BF00039543
  12. Manavalen, P. and Johnson, W. C. (1987) Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal. Biochem. 167, 76-85. https://doi.org/10.1016/0003-2697(87)90135-7
  13. Marie, S. C., Crozat, A. and Janne, O. A. (1992) Structure and organization of the human S-adenosylmethionine decarboxylase gene. J. BioI. Chem. 267, 18915-18923.
  14. Nomura, K., Hoshino, K. and Suzuki, N. (1999) The primary and higher order structures of sea urchin ovoperoxidase as detennined by cDNA cloning and predicted by homology modeling. Archives. Biochem. Biophys. 367, 173-184. https://doi.org/10.1006/abbi.1999.1219
  15. Odani, S., Namba, Y., Ishii, A., Ono, T. and Fujii, H. (2000) Disulfide bonds in rat cutaneous fatty acid-binding protein. J. Biochem. 128, 355-361. https://doi.org/10.1093/oxfordjournals.jbchem.a022761
  16. Odani, S., Baba, K., Tsuchida, Y., Aoyagi, Y., Wakui, S. and Takahashi, Y. (2001) Hepatic fatty acid-binding proteins of a teloost, Lateolabrax japonicus. The primary structures and location of a disulfide bond. J. Biochem. 129, 69-76. https://doi.org/10.1093/oxfordjournals.jbchem.a002838
  17. Park, S. J. and Cho, Y. D. (1995) Purification and Characterization of Soybean Cotyledonary Spennidine Dehydrogenase. J. Biochem. Mol. Biol. (fonnerly Korean Biochem. J.) 28, 408-413.
  18. Park, S. J. and Cho, Y. D. (1999) Identification of functionally important residues of Arabidopsis thaliana S-adenosylmethionine decarboxylase. J. Biochem. 126, 996-1003. https://doi.org/10.1093/oxfordjournals.jbchem.a022568
  19. Park, S. J. and Cho, Y. D. (2000) Studies on the active site on the Arabidopsis thaliana S-adenosylmethionine decarboxylase: $Lys^{81}$residue involvement in catalytic activity. J. Biochem. Mol. BioI. 33, 69-74.
  20. Pegg, A. E. and McCann, P. P. (1992) S-adenosylmethionine decarboxylase as an enzyme target for therapy. Pharmacol. Ther. 56, 359-377. https://doi.org/10.1016/0163-7258(92)90025-U
  21. Pegg, A. E., Xiong, H, Feith, D. J. and Shantz, L. M. (1998) S-adenosylmethionine decarboxylase: structure, function and regulation by polyarnines. Biochem. Soc. Trans. 26, 580-586. https://doi.org/10.1042/bst0260580
  22. Peitsch, M. C. (1996) ProMod and Swiss-Model: Internet-based tools for automated comparative protein modeling. Biochem. Soc. Trans. 24, 274-279. https://doi.org/10.1042/bst0240274
  23. Provencher, S. W. and Glockner, J. (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20, 33-37. https://doi.org/10.1021/bi00504a006
  24. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  25. Sanger, F., Nicklen. S. and Coulsen, A. R. (1977) DNA sequencing with chain-tenninating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463-5467. https://doi.org/10.1073/pnas.74.12.5463
  26. Satoh, T., Oshida, N., Ono, M., Hattori, M., Ohta, T., Watanabe, Moo Shinoda H., Takahashi, Y., Lee, J. S. and Samejima, T. (1999) Deletion of Alal44-LysI45 in thennos thennophilus inorganic pyrophosphatase suppresses thermal aggregation. J. Biochem. 125, 858-863. https://doi.org/10.1093/oxfordjournals.jbchem.a022360
  27. Schroder, G. and Schroder, J. (1995) cDNAs for S-adenosyl-L-methionine decarboxylase from Catharanthus roseus, heterologous expression, identification of the proenzyme-processing site, evidence for the presence of both subunits in the active enzyme, and a conserved region in the 5' mRNA leader. Eur. J. Biochem. 228, 74-78. https://doi.org/10.1111/j.1432-1033.1995.tb20231.x
  28. Segel, I. H. (1975) Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-state Enzyme Systems, John Wiley & Sons, New York, New York.
  29. Shon, Y. H., Ha, Y. M., Jeong, T. R., Kim, C. H. and Nam, K. S. (2001) Modifying Action of Chitosan Oligosaccharide on 2- Amino-3,8-dimethylirnidazo[ 4,5-f] quinoxaline (MeIQx)-induced Mutagenesis. J. Biochem. Mol. BioI. 34, 90-94.
  30. Stanley, B. A. and Pegg, A. E. (1991) Amino acid residues necessary for putrescine stimulation of human S-adenosylmethionine decarboxylase proenzyme processing and catalytic activity. J. Biol. Chem. 266, 18502-18506.
  31. Stanley, B. A., Shantz, L. M. and Pegg, A. E. (1994) Expression of mammalian S-adenosylmethionine decarboxylase in Escherichia coli. Determination of sites for putrescine activation of activity and processing. J. Biol. Chem. 269, 7901-7909.
  32. Tabor, C. W. and Tabor, H. (1984) Polyarnines. Annu. Rev. Biochem. 53, 749-790. https://doi.org/10.1146/annurev.bi.53.070184.003533
  33. Xiong, H., Stanley, B. A. and Pegg, A. E. (1999) Role of cysteine-82 in the catalytic mechanism of human S-denosylmethionine decarboxylase. Biochemistry 38, 2462-2470. https://doi.org/10.1021/bi9825201
  34. Xiong, H., Stanley, B. A., Tekwani, B. L. and Pegg, A. E. (1997) Processing of mammalian and plant S-adenosylmethionine decarboxylase proenzymes. J. Biol. Chem. 45, 28342-28348.
  35. Yang, Y. G. and Cho, Y. D. (1991) Purification of S-adenosylmethionine decarboxylase from soybean. Biochem. Biophys. Res. Commun. 181, 784-780.
  36. Yin, J. and Jing, G. (2000) Tryptophan 140 is important, but serine 141 is essential for the fonnation of the integrated confonnation of staphylococcal nuclease. J. Biochem. 128, 113-119. https://doi.org/10.1093/oxfordjournals.jbchem.a022721
  37. Zhang, X. J., Basse, W. A. and Matthews, B. W. (1991) Toward a simplification of the protein folding problem: a stabilizing polyalanine alpha-helix engineered in T4 lysozyme. Biochemistry 30, 2012-2017. https://doi.org/10.1021/bi00222a001

Cited by

  1. Asparagine-473 Residue Is Important to the Efficient Function of Human Dihydrolipoamide Dehydrogenase vol.38, pp.2, 2005, https://doi.org/10.5483/BMBRep.2005.38.2.248