• Title/Summary/Keyword: Arabidopsis mutants

Search Result 98, Processing Time 0.037 seconds

Leaf Senescence in a Stay-Green Mutant of Arabidopsis thaliana: Disassembly Process of Photosystem I and II during Dark-Incubation

  • Oh, Min-Hyuk;Kim, Yung-Jin;Lee, Choon-Hwan
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.256-262
    • /
    • 2000
  • In this study the disassembly process of chlorophyII (ChI)protein complexes of a stay-green mutant (ore10 of Arabidopsis thaliana) was investigated during the dark incubation of detached leaves. During this dark-induced senescence (DIS), the Chi loss was delayed in the mutant, while the photochemical efficiency of photosystem II (PSII) or Fv/Fm was accelerated when compared with the wild type (WT) leaves. This indicates that the decrease in Fv/Fm is a separate process and not causally-linked to the degradation of Chi during DIS of Arabidopsis leaves. In the native green gel electrophoresis of the Chi-protein complexes, which was combined with an additional twodimensional SDS-PAGE analysis, the delayed senescence of this mutant was characterized by the appearance of an aggregate at 1 d or 2 d, as well as very stable light harvesting complex II (LHCII) trimers until 5 d after the start of DIS. The polypeptide composition of the aggregates varied during the whole DIS at 5 d. Dl protein appeared to be missing in the aggregates. This result supports the idea of a faster depletion of functional PSH in the mutants compared with WT, as suggested by the earlier reduction of Fv/Fm and the stable Chl a/b ratio in the mutants. At 5 d, the WT leaves also often showed aggregates, but the polypeptide composition was different from those of ore10. The results presented suggest that the formation of aggregates, or stable LHCII trimers in the stay-green mutants, is a way to structurally protect Chi-protein complexes from serious proteolytic degradation. Detailed disassembly processes of Chi-protein complexes in WT and ore10 mutants are discussed.

  • PDF

Arabidopsis thaliana의 Ethylene Triple Response Mutant에서 에틸렌 생합성 과정의 생리 생화학적 특성

  • 이준승
    • Journal of Plant Biology
    • /
    • v.39 no.1
    • /
    • pp.31-40
    • /
    • 1996
  • The physiological and biochemical characterizations of the ethylene-related mutants in Arabidopsis thaliana - ethylene overproducing mutant (eto1-l) and ethylene insensitive mutants (etrl-3, ein2-l) - were detailed in this studies. Two or three week.old mature rosette leaves (before bolting) were used as the plant materials. Ethylene productions of eto1-l, etrl-3, and ein2-l mutants were about 200%, 400%, and 450% compared to that of wild type, respectively. ACC synthase and ACC oxidase activities of eto1-l mutant were similar to those of wild type. ACC content and ACC N-malonyltransferase activity, however, were 4.5 times and 3 times higher than those of wild type, respectively. SAM synthetase activity increased by 50% in eto1-l mutant plant. These results indicated that the alteration in the eto1-l mutant occured before the step of the conversion of SAM to ACe. In etrl-3 and ein2-l mutants, ACC synthase activities increased, but ACC oxidase activities decreased. ACC content and ACC N-malonyltransfcrase activity were 2 times higher than those of wild type. SAM synthetase activity in etrl-3 is similar to those of wild type, while it increased by 73% in ein2-l. These results showed that the block in ethylene action affected the autoregulation of ethylene biosynthesis, so that ACC synthase activity was not autoinhibited and ACC oxidase activity was not auto stimulated by ethylene. When the leaf tissues were used for in vitro kinase assay, a cytosolic protein (approximately 36 kDa) was phosphorylated only in eto1-l and ein2-l mutants.utants.

  • PDF

AtHAP3b Plays a Crucial Role in the Regulation of Flowering Time in Arabidopsis during Osmotic Stress

  • Chen, Nai-Zhi;Zhang, Xiu-Qing;Wei, Peng-Cheng;Chen, Qi-Jun;Ren, Fei;Chen, Jia;Wang, Xue-Chen
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1083-1089
    • /
    • 2007
  • The HAP complex has been found in many eukaryotic organisms. HAP recognizes the CCAAT box present in the promoters of 30% of all eukaryotic genes. The HAP complex consists of three subunits - HAP2, HAP3 and HAP5. In this paper, we report the biological function of the AtHAP3b gene that encodes one of the HAP3 subunits in Arabidopsis. Compared with wild-type plants, hap3b-1 and hap3b-2 mutants exhibited a delayed flowering time under long-day photoperiod conditions. Moreover, the transcription levels of FT were substantially lower in the mutants than in the wild-type plants. These results imply that AtHAP3b may function in the control of flowering time by regulating the expression of FT in Arabidopsis. In a subsequent study, AtHAP3b was found to be induced by osmotic stress. Under osmotic stress conditions, the hap3b- 1 and hap3b-2 mutants flowered considerably later than the wild-type plants. These results suggest that the AtHAP3b gene plays more important roles in the control of flowering under osmotic stress in Arabidopsis.

Phytochromes A and B: Specificity of photoperception and structure/function analysis of bilin chromophores

  • Shinomura, Tomoko;Hanzawa, Hiroko;Furuya, Masaki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.90-93
    • /
    • 2002
  • Phytochrome A (phyA) and phytochrome B (phyB) perceive light and adapt to fluctuating circumstances by different manners in terms of effective wavelengths, required fluence and photoreversibility. Action spectra for induction of seed germination and inhibition of hypocotyl elongation using phytochrome mutants of Arabidopsis showed major difference. PhyA is the principal photoreceptor for the very low fluence responses and the far-red light-induced high irradiance responses, while phyB controls low fluence response in a red/far-red reversible mode. The structural requirement of their bilin chromophores for photosensory specificity of phyA and phyB was investigated by reconstituting holophytochromes through feeding various synthetic bilins to the following chromophore-deficient mutants: hy1, hyl/phyA and hyl/phyB mutants of Arabidopsis. We found that the vinyl side-chain of the D-ring in phytochromobilin interacts with phyA apoprotein. This interaction plays a direct role in mediating the specific photosensory function of phyA. The ethyl side-chain of the D-ring in phycocyanobilin fails to interact with phyA apoprotein, therefore, phyA specific photosensory function is not observed. In contrast, both phytochromobilin and phycocyanobilin interact with phyB apoprotein and induce phyB specific photosensory functions. Structural requirements of the apoproteins and the chromophores for the specific photoperception of phyA and phyB are discussed.

  • PDF

Molecular Analysis of Geminigirus ORFs on Symptom Development

  • Park, Eulyong;Hyunsik Hwang;Lee, Sukchan
    • The Plant Pathology Journal
    • /
    • v.15 no.1
    • /
    • pp.38-43
    • /
    • 1999
  • Mutants of the monopartite geminivirus beet curly top virus (BCTV) have been screened for infectivity, systemic movement, replication and symptom development in Arabidopsis thaliana. As known by coding for coat protein, R1 mutant was not infectious and did not move systemically. R2, R3 and L2/L3 mutants produced milder symptoms compared to wild type BCTV but the infectivity was reduced by 40% to 60%. R2 ORF is thought to be involved in the regulation of ssDNA and dsDNA accumulation because only dsDNA was accumulated on R2-infected organs. Disruption of ORF L4 resulted in reduced infections, but the viral DNA was accumulated in infected organs from roots to shoot tips as much as wild type BCTV on Sei-O. In addition, 4 mutants did not produce callus-like tissues on infected organs, suggesting that L4 ORF may play a role in the induction of host cell divisions by virus infection. This result was supported by the patterns of mRNA expression and promoter analysis of the cell cycle marker gene, cycl, on Arabidopsis. cycl mRNA was accumulated on symptomatic organs by wild type BCTV infections but not by L4 mutant. We conclude that the BCTV L4 ORF is essential for symptom developments, specially callus-like formation on infected organs.

  • PDF

Transformation and Gene Expression in Arabidopsis thaliana (Arabidopsis의 형질전환과 유전자 발현)

  • 백경희
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.169-174
    • /
    • 1987
  • Arabidopsis thaliana has been used as a good model system for the molercular biological studies on plants for following reasons. It has small gonome size and short generation time, with easiness to obtain mutants and to be transformed. Prospect of its use in applied field is discussed briefly.

  • PDF

Structural Roles of Cysteine 50 and Cysteine 230 Residues in Arabidopsis thaliana S-Adenosylmethionine Decarboxylase

  • Park, Sung-Joon;Cho, Young-Dong
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.178-185
    • /
    • 2002
  • The Arabidopsis thaliana S-Adenosylmethionine decarboxylase (AdoMetDC) cDNA ($GenBank^{TM}$ U63633) was cloned. Site-specific mutagenesis was performed to introduce mutations at the conserved cysteine $Cys^{50}$, $Cys^{83}$, and $Cys^{230}$, and $lys^{81}$ residues. In accordance with the human AdoMetDC, the C50A and C230A mutagenesis had minimal effect on catalytic activity, which was further supported by DTNB-mediated inactivation and reactivation. However, unlike the human AdoMetDC, the $Cys^{50}$ and $Cys^{230}$ mutants were much more thermally unstable than the wild type and other mutant AdoMetDC, suggesting the structural significance of cysteines. Furthermore, according to a circular dichroism spectrum analysis, the $Cys^{50}$ and $Cys^{230}$ mutants show a higher a-helix content and lower coiled-coil content when compared to that of wild type and the other mutant AdoMetDC. Also, the three-dimensional structure of Arabidopsis thaliana AdoMetDC could further support all of the data presented here. Summarily, we suggest that the $Cys^{50}$ and $Cys^{230}$ residues are structurally important.

Functional Conservation and Divergence of FVE Genes that Control Flowering Time and Cold Response in Rice and Arabidopsis

  • Baek, Il-Sun;Park, Hyo-Young;You, Min Kyoung;Lee, Jeong Hwan;Kim, Jeong-Kook
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.368-372
    • /
    • 2008
  • Recent molecular and genetic studies in rice, a short-day plant, have elucidated both conservation and divergence of photoperiod pathway genes and their regulators. However, the biological roles of rice genes that act within the autonomous pathway are still largely unknown. In order to better understand the function of the autonomous pathway genes in rice, we conducted molecular genetic analyses of OsFVE, a rice gene homologous to Arabidopsis FVE. OsFVE was found to be ubiquitously expressed in vegetative and reproductive organs. Overexpression of OsFVE could rescue the flowering time phenotype of the Arabidopsis fve mutants by up-regulating expression of the SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1) and down-regulating FLOWERING LOCUS C (FLC) expression. These results suggest that there may be a conserved function between OsFVE and FVE in the control of flowering time. However, OsFVE overexpression in the fve mutants did not rescue the flowering time phenotype in in relation to the response to intermittent cold treatment.

Arabidopsis SIZ1 positively regulates alternative respiratory bypass pathways

  • Park, Bong-Soo;Kim, Sung-Il;Song, Jong-Tae;Seo, Hak-Soo
    • BMB Reports
    • /
    • v.45 no.6
    • /
    • pp.342-347
    • /
    • 2012
  • Plant mitochondria possess alternative respiratory pathways mediated by the type II NAD(P)H dehydrogenases and alternative oxidases. Here, E3 SUMO ligase was shown to regulate alternative respiratory pathways and to participate in the maintenance of carbon and nitrogen balance in Arabidopsis. The transcript abundance of the type II NAD(P)H dehydrogenases NDA2 and NDB2 and alternative oxidases AOX1a and AOX1d genes was low in siz1-2 mutants compared to that in wild-type. The addition of nitrate or ammonium resulted in a decrease or an increase in the expression of the same gene families, respectively, in both wild-type and siz1-2 mutants. The amount of free sugar (glucose, fructose and sucrose) was lower in siz1-2 mutants than that in wild-type. These results indicate that low nitrate reductase activity due to the AtSIZ1 mutation is correlated with an overall decrease in alternative respiration and with a low carbohydrate content to maintain the carbon to nitrogen ratio in siz1-2 mutants.