• 제목/요약/키워드: Arabic Natural Language Processing

검색결과 12건 처리시간 0.023초

Building Hybrid Stop-Words Technique with Normalization for Pre-Processing Arabic Text

  • Atwan, Jaffar
    • International Journal of Computer Science & Network Security
    • /
    • 제22권7호
    • /
    • pp.65-74
    • /
    • 2022
  • In natural language processing, commonly used words such as prepositions are referred to as stop-words; they have no inherent meaning and are therefore ignored in indexing and retrieval tasks. The removal of stop-words from Arabic text has a significant impact in terms of reducing the size of a cor- pus text, which leads to an improvement in the effectiveness and performance of Arabic-language processing systems. This study investigated the effectiveness of applying a stop-word lists elimination with normalization as a preprocessing step. The idea was to merge statistical method with the linguistic method to attain the best efficacy, and comparing the effects of this two-pronged approach in reducing corpus size for Ara- bic natural language processing systems. Three stop-word lists were considered: an Arabic Text Lookup Stop-list, Frequency- based Stop-list using Zipf's law, and Combined Stop-list. An experiment was conducted using a selected file from the Arabic Newswire data set. In the experiment, the size of the cor- pus was compared after removing the words contained in each list. The results showed that the best reduction in size was achieved by using the Combined Stop-list with normalization, with a word count reduction of 452930 and a compression rate of 30%.

Q&A Chatbot in Arabic Language about Prophet's Biography

  • Somaya Yassin Taher;Mohammad Zubair Khan
    • International Journal of Computer Science & Network Security
    • /
    • 제24권3호
    • /
    • pp.211-223
    • /
    • 2024
  • Chatbots have become very popular in our times and are used in several fields. The emergence of chatbots has created a new way of communicating between human and computer interaction. A Chatbot also called a "Chatter Robot," or conversational agent CA is a software application that mimics human conversations in its natural format, which contains textual material and oral communication with artificial intelligence AI techniques. Generally, there are two types of chatbots rule-based and smart machine-based. Over the years, several chatbots designed in many languages for serving various fields such as medicine, entertainment, and education. Unfortunately, in the Arabic chatbots area, little work has been done. In this paper, we developed a beneficial tool (chatBot) in the Arabic language which contributes to educating people about the Prophet's biography providing them with useful information by using Natural Language Processing.

Phrase-Chunk Level Hierarchical Attention Networks for Arabic Sentiment Analysis

  • Abdelmawgoud M. Meabed;Sherif Mahdy Abdou;Mervat Hassan Gheith
    • International Journal of Computer Science & Network Security
    • /
    • 제23권9호
    • /
    • pp.120-128
    • /
    • 2023
  • In this work, we have presented ATSA, a hierarchical attention deep learning model for Arabic sentiment analysis. ATSA was proposed by addressing several challenges and limitations that arise when applying the classical models to perform opinion mining in Arabic. Arabic-specific challenges including the morphological complexity and language sparsity were addressed by modeling semantic composition at the Arabic morphological analysis after performing tokenization. ATSA proposed to perform phrase-chunks sentiment embedding to provide a broader set of features that cover syntactic, semantic, and sentiment information. We used phrase structure parser to generate syntactic parse trees that are used as a reference for ATSA. This allowed modeling semantic and sentiment composition following the natural order in which words and phrase-chunks are combined in a sentence. The proposed model was evaluated on three Arabic corpora that correspond to different genres (newswire, online comments, and tweets) and different writing styles (MSA and dialectal Arabic). Experiments showed that each of the proposed contributions in ATSA was able to achieve significant improvement. The combination of all contributions, which makes up for the complete ATSA model, was able to improve the classification accuracy by 3% and 2% on Tweets and Hotel reviews datasets, respectively, compared to the existing models.

The Effect of the Sentence Location on Arabic Sentiment Analysis

  • Alotaibi, Saud S.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.317-319
    • /
    • 2022
  • Rich morphology language such as Arabic needs more investigation and method to improve the sentiment analysis task. Using all document parts in the process of the sentiment analysis may add some unnecessary information to the classifier. Therefore, this paper shows the ongoing work to use sentence location as a feature with Arabic sentiment analysis. Our proposed method employs a supervised sentiment classification method by enriching the feature space model with some information from the document. The experiments and evaluations that were conducted in this work show that our proposed feature in the sentiment analysis for Arabic improves the performance of the classifier compared to the baseline model.

A Survey of Arabic Thematic Sentiment Analysis Based on Topic Modeling

  • Basabain, Seham
    • International Journal of Computer Science & Network Security
    • /
    • 제21권9호
    • /
    • pp.155-162
    • /
    • 2021
  • The expansion of the world wide web has led to a huge amount of user generated content over different forums and social media platforms, these rich data resources offer the opportunity to reflect, and track changing public sentiments and help to develop proactive reactions strategies for decision and policy makers. Analysis of public emotions and opinions towards events and sentimental trends can help to address unforeseen areas of public concerns. The need of developing systems to analyze these sentiments and the topics behind them has emerged tremendously. While most existing works reported in the literature have been carried out in English, this paper, in contrast, aims to review recent research works in Arabic language in the field of thematic sentiment analysis and which techniques they have utilized to accomplish this task. The findings show that the prevailing techniques in Arabic topic-based sentiment analysis are based on traditional approaches and machine learning methods. In addition, it has been found that considerably limited recent studies have utilized deep learning approaches to build high performance models.

Using Roots and Patterns to Detect Arabic Verbs without Affixes Removal

  • Abdulmonem Ahmed;Aybaba Hancrliogullari;Ali Riza Tosun
    • International Journal of Computer Science & Network Security
    • /
    • 제23권4호
    • /
    • pp.1-6
    • /
    • 2023
  • Morphological analysis is a branch of natural language processing, is now a rapidly growing field. The fundamental tenet of morphological analysis is that it can establish the roots or stems of words and enable comparison to the original term. Arabic is a highly inflected and derivational language and it has a strong structure. Each root or stem can have a large number of affixes attached to it due to the non-concatenative nature of Arabic morphology, increasing the number of possible inflected words that can be created. Accurate verb recognition and extraction are necessary nearly all issues in well-known study topics include Web Search, Information Retrieval, Machine Translation, Question Answering and so forth. in this work we have designed and implemented an algorithm to detect and recognize Arbic Verbs from Arabic text.The suggested technique was created with "Python" and the "pyqt5" visual package, allowing for quick modification and easy addition of new patterns. We employed 17 alternative patterns to represent all verbs in terms of singular, plural, masculine, and feminine pronouns as well as past, present, and imperative verb tenses. All of the verbs that matched these patterns were used when a verb has a root, and the outcomes were reliable. The approach is able to recognize all verbs with the same structure without requiring any alterations to the code or design. The verbs that are not recognized by our method have no antecedents in the Arabic roots. According to our work, the strategy can rapidly and precisely identify verbs with roots, but it cannot be used to identify verbs that are not in the Arabic language. We advise employing a hybrid approach that combines many principles as a result.

Arabic Words Extraction and Character Recognition from Picturesque Image Macros with Enhanced VGG-16 based Model Functionality Using Neural Networks

  • Ayed Ahmad Hamdan Al-Radaideh;Mohd Shafry bin Mohd Rahim;Wad Ghaban;Majdi Bsoul;Shahid Kamal;Naveed Abbas
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권7호
    • /
    • pp.1807-1822
    • /
    • 2023
  • Innovation and rapid increased functionality in user friendly smartphones has encouraged shutterbugs to have picturesque image macros while in work environment or during travel. Formal signboards are placed with marketing objectives and are enriched with text for attracting people. Extracting and recognition of the text from natural images is an emerging research issue and needs consideration. When compared to conventional optical character recognition (OCR), the complex background, implicit noise, lighting, and orientation of these scenic text photos make this problem more difficult. Arabic language text scene extraction and recognition adds a number of complications and difficulties. The method described in this paper uses a two-phase methodology to extract Arabic text and word boundaries awareness from scenic images with varying text orientations. The first stage uses a convolution autoencoder, and the second uses Arabic Character Segmentation (ACS), which is followed by traditional two-layer neural networks for recognition. This study presents the way that how can an Arabic training and synthetic dataset be created for exemplify the superimposed text in different scene images. For this purpose a dataset of size 10K of cropped images has been created in the detection phase wherein Arabic text was found and 127k Arabic character dataset for the recognition phase. The phase-1 labels were generated from an Arabic corpus of quotes and sentences, which consists of 15kquotes and sentences. This study ensures that Arabic Word Awareness Region Detection (AWARD) approach with high flexibility in identifying complex Arabic text scene images, such as texts that are arbitrarily oriented, curved, or deformed, is used to detect these texts. Our research after experimentations shows that the system has a 91.8% word segmentation accuracy and a 94.2% character recognition accuracy. We believe in the future that the researchers will excel in the field of image processing while treating text images to improve or reduce noise by processing scene images in any language by enhancing the functionality of VGG-16 based model using Neural Networks.

Developing and Pre-Processing a Dataset using a Rhetorical Relation to Build a Question-Answering System based on an Unsupervised Learning Approach

  • Dutta, Ashit Kumar;Wahab sait, Abdul Rahaman;Keshta, Ismail Mohamed;Elhalles, Abheer
    • International Journal of Computer Science & Network Security
    • /
    • 제21권11호
    • /
    • pp.199-206
    • /
    • 2021
  • Rhetorical relations between two text fragments are essential information and support natural language processing applications such as Question - Answering (QA) system and automatic text summarization to produce an effective outcome. Question - Answering (QA) system facilitates users to retrieve a meaningful response. There is a demand for rhetorical relation based datasets to develop such a system to interpret and respond to user requests. There are a limited number of datasets for developing an Arabic QA system. Thus, there is a lack of an effective QA system in the Arabic language. Recent research works reveal that unsupervised learning can support the QA system to reply to users queries. In this study, researchers intend to develop a rhetorical relation based dataset for implementing unsupervised learning applications. A web crawler is developed to crawl Arabic content from the web. A discourse-annotated corpus is generated using the rhetorical structural theory. A Naïve Bayes based QA system is developed to evaluate the performance of datasets. The outcome shows that the performance of the QA system is improved with proposed dataset and able to answer user queries with an appropriate response. In addition, the results on fine-grained and coarse-grained relations reveal that the dataset is highly reliable.

Information Retrieval Systems: Between Morphological Analyzers and Systemming Algorithms

  • Mohamed, Afaf Abdel Rhman;Ouni, Chafika;Eljack, Sarah Mustafa;Alfayez, Fayez
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.375-381
    • /
    • 2022
  • The main objective of an Information Retrieval System (IRS) is to obtain suitable information within a reasonable time to satisfy a user need. To achieve this purpose, an IRS should have a good indexing system that is based on natural language processing.In this context, we focus on the available Arabic language processing techniques for an IRS with the goal of contributing to an improvement in the performance. Our contribution consists of integrating morphological analysis into an IRS in order to compare the impact of morphological analysis with that of stemming algorithms.

Deep Learning Based Rumor Detection for Arabic Micro-Text

  • Alharbi, Shada;Alyoubi, Khaled;Alotaibi, Fahd
    • International Journal of Computer Science & Network Security
    • /
    • 제21권11호
    • /
    • pp.73-80
    • /
    • 2021
  • Nowadays microblogs have become the most popular platforms to obtain and spread information. Twitter is one of the most used platforms to share everyday life event. However, rumors and misinformation on Arabic social media platforms has become pervasive which can create inestimable harm to society. Therefore, it is imperative to tackle and study this issue to distinguish the verified information from the unverified ones. There is an increasing interest in rumor detection on microblogs recently, however, it is mostly applied on English language while the work on Arabic language is still ongoing research topic and need more efforts. In this paper, we propose a combined Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to detect rumors on Twitter dataset. Various experiments were conducted to choose the best hyper-parameters tuning to achieve the best results. Moreover, different neural network models are used to evaluate performance and compare results. Experiments show that the CNN-LSTM model achieved the best accuracy 0.95 and an F1-score of 0.94 which outperform the state-of-the-art methods.