• Title/Summary/Keyword: Aquifer flow

Search Result 237, Processing Time 0.026 seconds

Simulation of Groundwater Flow and Sensitivity Analysis for a Riverbank Filtration Site in Koryeong, Korea (경북 고령군 강변여과 취수 지역의 지하수 유동 모사 및 민감도 분석)

  • Won, Lee-Jung;Koo, Min-Ho;Kim, Hyoung-Su
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.45-55
    • /
    • 2006
  • A 2-D unconfined flow model is developed to analyze annual variations of groundwater level and bank filtration rate (BFR) for an experimental riverbank filtration site in Koryeong, Korea. Two types of boundary conditions are examined for the river boundary in the conceptual model: the static head condition that uses the average water level of the river and the dynamic cyclic condition that incorporates annual fluctuation of water level. Simulations show that the estimated BFR ranges $74.3{\sim}87.0%$ annually with the mean of 82.4% for the static head boundary condition and $52.7{\sim}98.1%$ with the mean of 78.5% for the dynamic cyclic condition. The results illustrate that the dynamic cyclic condition should be used for accurate evaluation of BFR. Simulations also show that increase of the distance between the river and the pumping wells slightly decreases BFR up to 4%, and thereby indicate that it is not a critical factor to be accounted for in designing BFR of the bank filtration system. A sensitivity analysis is performed to examine the effects of model parameters such as hydraulic conductivity and specific yield of the aquifer, recharge rate, and pumping rate. The results demonstrate that the average groundwater level and BFR are most sensitive to both the pumping rate and the recharge rate, while the water level of the pumping wells is sensitive to the hydraulic conductivity and the pumping rate.

A Method of Estimating the Volume of Exploitable Groundwater Considering Minimum Desirable Streamflow (최소하천유출량을 고려한 지하수 개발가능량 산정방안)

  • Chung, Il-Moon;Lee, Jeongwoo
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.375-380
    • /
    • 2013
  • The concept of safe yield places an emphasis on balancing groundwater withdrawal with groundwater recharge but ignores naturally occurring groundwater discharge. Because streams and their alluvial aquifers are closely linked in terms of water supply and water quality, to be properly understood and managed they must be considered together. Therefore, some districts in Kansas have reevaluated their safe-yield policies to account for natural groundwater discharge and stream-aquifer interactions by amending their safe-yield regulations to include a portion of baseflow as the minimum desirable streamflow (MDS). This study proposes a modified safe-yield policy in which the drought flow is chosen as the MDS. Baseflow separation was conducted from streamflow hydrograph and the results are presented as a flow-duration curve. The exploitable groundwater can be determined by subtracting MDS from the cumulative baseflow. This method was tested in the Musimcheon watershed, which was validated for streamflow using the SWAT-K model. The annually averaged exploitable groundwater in the whole watershed was estimated to be 86 mm. The exploitable groundwater amounts were also estimated for each subwatershed in the Musimcheon watershed.

Groundwater Flow Model of Igsan Area (익산 지역의 지하수 유동 모델)

  • Hamm, Se Yeong;Kim, Youn Ki
    • Economic and Environmental Geology
    • /
    • v.22 no.4
    • /
    • pp.381-393
    • /
    • 1989
  • Hydrogeological modelling was performed to evaluate groundwater flow system in Igsan Area. The study area extends over $790km^2$. The geology consists of Jurassic Daebo granite and gneissose granite and Precambrian metamorphic rocks. The capability of pumping yield is the highest in gneissose granite region among them due to comparatively thick weathered zone with thickness ranging from 10m to 25m. The Colorado State University Finite Difference Model was used for the model simulation. The model was divided into 28 rows and 31 columns with variable grid spacing. The model was calibrated under steady-state and unsteady-state conditions. In the steady-state simulation, the model results were compared with measured water table contours in September 1985 with determining hydraulic conductivities and net recharge rates during rainy season. Unsteady state simulation was done to know the aquifer response due to groundwater abstraction. The non- steady state calibration was conducted to determine the distribution and magnitudes of specific yields and discharge/recharge rates during dry season as matching water level altitudes in May 1986. The calibrated model was used to simulate water level vaiation caused by groundwater withdrawal and natural recharge from 1 October, 1985 until 30 September, 1995. The calibrated model can be used to groundwater development schemes on regional groundwater levels, but it cannot be used to simulate local groundwater level change at a specific site.

  • PDF

Hydrogeological properties around the KURT (KURT 주변지역의 수리지질특성 연구)

  • Lee, Jin-Yong;Kim, Kyung-Su;Park, Kyung-Woo;Han, Woon-Woo
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.121-126
    • /
    • 2010
  • Current technology for radioactive waste disposal facility is operated as part of KURT site characterization in terms of reliability assessment is conducted to expand. In this study, a geological model of KURT surrounding area on the basis of flow characteristics of the site-scale hydrogeological study was about. Distributed in the study area into four boreholes were plotted using the stereo net NS, NW, EW, Low-angle fracture group was able to identify the components of geological models and include top soil layer, belt of weathering, Low-angle fracture zone, fracture zone was divided into. Separated by fracture of the hydraulic test of through the groundwater aquifer that provides the flow hydraulic conductivity and insulation hydraulic affecting the slope of the normal distribution for the size and direction by performing statistical analysis of fracture in the direction of local ns The advantage was confirmed. In addition, Low-angle fracture hydraulic conductivity of the value of 3.61e-07 m/s has a value greater than the major fracture, the fracture zones exist in the base rock and base rock and the hydraulic characteristics of the different methods applied and had to have a different interpretation judged by was.

A Development of 3-D Numeric Model for the Confined Flow and Discharge under Sea Ground (해저 지중 피압유체의 흐름과 양수량 산출에 관한 3차원 수치모형의 개발)

  • Kim, Sang-Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.387-396
    • /
    • 2010
  • A 3-D numeric model for the confined transient flow under sea ground have been developed. This is FDM model using Gauss-Seidel SOR (successive over-relaxation). This model shows the similar head distribution pattern to Theis analytic solution and MODFLOW simulation. The input flowrate to the aquifer and discharge of well have been compared. And it have been found that mass balance is influenced by the weight factor ${\alpha}$, i.e. fullyimplicit method (${\alpha}$=1) shows 5% error, but when ${\alpha}$ becomes to 0.5(Crank and Nicolson method) the mass balance becomes worse and the model result diverges. And the convergency of the model is not much different when $\lambda$ (over-relaxation factor)=0.8~1.5, but when $\lambda$>1.5, the model result diverges. The test-run shows that the well discharge becomes smaller when another well is near. This model can cover the isotropy$(Kx{\neq}Ky{\neq}Kz)$ and inhomogeneity, and can be used for the selection of well site, discharge calculation, and head prediction in case of the artificial recharge etc.

Koreanized Analysis System Development for Groundwater Flow Interpretation (지하수유동해석을 위한 한국형 분석시스템의 개발)

  • Choi, Yun-Yeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.3 s.10
    • /
    • pp.151-163
    • /
    • 2003
  • In this study, the algorithm of groundwater flow process was established for koreanized groundwater program development dealing with the geographic and geologic conditions of the aquifer have dynamic behaviour in groundwater flow system. All the input data settings of the 3-DFM model which is developed in this study are organized in Korean, and the model contains help function for each input data. Thus, it is designed to get detailed information about each input parameter when the mouse pointer is placed on the corresponding input parameter. This model also is designed to easily specify the geologic boundary condition for each stratum or initial head data in the work sheet. In addition, this model is designed to display boxes for input parameter writing for each analysis condition so that the setting for each parameter is not so complicated as existing MODFLOW is when steady and unsteady flow analysis are performed as well as the analysis for the characteristics of each stratum. Descriptions for input data are displayed on the right side of the window while the analysis results are displayed on the left side as well as the TXT file for this results is available to see. The model developed in this study is a numerical model using finite differential method, and the applicability of the model was examined by comparing and analyzing observed and simulated groundwater heads computed by the application of real recharge amount and the estimation of parameters. The 3-DFM model is applied in this study to Sehwa-ri, and Songdang-ri area, Jeju, Korea for analysis of groundwater flow system according to pumping, and obtained the results that the observed and computed groundwater head were almost in accordance with each other showing the range of 0.03 - 0.07 error percent. It is analyzed that the groundwater flow distributed evenly from Nopen-orum and Munseogi-orum to Wolang-bong, Yongnuni-orum, and Songja-bong through the computation of equipotentials and velocity vector using the analysis result of simulation which was performed before the pumping started in the study area. These analysis results show the accordance with MODFLOW's.

Estimation of Groundwater Recharge by Considering Runoff Process and Groundwater Level Variation in Watershed (유역 유출과정과 지하수위 변동을 고려한 분포형 지하수 함양량 산정방안)

  • Chung, Il-Moon;Kim, Nam-Won;Lee, Jeong-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.19-32
    • /
    • 2007
  • In Korea, there have been various methods of estimating groundwater recharge which generally can be subdivided into three types: baseflow separation method by means of groundwater recession curve, water budget analysis based on lumped conceptual model in watershed, and water table fluctuation method (WTF) by using the data from groundwater monitoring wells. However, groundwater recharge rate shows the spatial-temporal variability due to climatic condition, land use and hydrogeological heterogeneity, so these methods have various limits to deal with these characteristics. To overcome these limitations, we present a new method of estimating recharge based on water balance components from the SWAT-MODFLOW which is an integrated surface-ground water model. Groundwater levels in the interest area close to the stream have dynamics similar to stream flow, whereas levels further upslope respond to precipitation with a delay. As these behaviours are related to the physical process of recharge, it is needed to account for the time delay in aquifer recharge once the water exits the soil profile to represent these features. In SWAT, a single linear reservoir storage module with an exponential decay weighting function is used to compute the recharge from soil to aquifer on a given day. However, this module has some limitations expressing recharge variation when the delay time is too long and transient recharge trend does not match to the groundwater table time series, the multi-reservoir storage routing module which represents more realistic time delay through vadose zone is newly suggested in this study. In this module, the parameter related to the delay time should be optimized by checking the correlation between simulated recharge and observed groundwater levels. The final step of this procedure is to compare simulated groundwater table with observed one as well as to compare simulated watershed runoff with observed one. This method is applied to Mihocheon watershed in Korea for the purpose of testing the procedure of proper estimation of spatio-temporal groundwater recharge distribution. As the newly suggested method of estimating recharge has the advantages of effectiveness of watershed model as well as the accuracy of WTF method, the estimated daily recharge rate would be an advanced quantity reflecting the heterogeneity of hydrogeology, climatic condition, land use as well as physical behaviour of water in soil layers and aquifers.

A Numerical Study on the CO2 Leakage Through the Fault During Offshore Carbon Sequestration (해양지중에 저장된 이산화탄소의 단층을 통한 누출 위험 평가에 관한 수치해석 연구)

  • Kang, Kwangu;Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.94-101
    • /
    • 2015
  • To mitigate the greenhouse gas emission, many carbon capture and storage projects are underway all over the world. In Korea, many studies focus on the storage of $CO_2$ in the offshore sediment. Assurance of safety is one of the most important issues in the geological storage of $CO_2$. Especially, the assessment of possibility of leakage and amount of leaked $CO_2$ is very crucial to analyze the safety of marine geological storage of $CO_2$. In this study, the leakage of injected $CO_2$ through fault was numerically studied. TOUGH2-MP ECO2N was used to simulate the subsurface behavior of injected $CO_2$. The storage site was 150 m thick saline aquifer located 825 m under the continental shelf. It was assumed that $CO_2$ leak was happened through the fault located 1,000 m away from the injection well. The injected $CO_2$ could migrate through the aquifer by both pressure difference driven by injection and buoyancy force. The enough pressure differences made it possible the $CO_2$ to migrate to the bottom of the fault. The $CO_2$ could be leaked to seabed through the fault due to the buoyancy force. Prior to leakage of the injected $CO_2$, the formation water leaked to seabed. When $CO_2$ reached the seabed, leakage of formation water stopped but the same amount of sea water starts to flow into the underground as the amount of leaked $CO_2$. To analyze the effect of injection rate on the leakage behavior, the injection rate of $CO_2$ was varied as 0.5, 0.75, and $1MtCO_2/year$. The starting times of leakage at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 11.3, 15.6 and 23.2 years after the injection, respectively. The leakage of $CO_2$ to the seabed continued for a period time after the end of $CO_2$ injection. The ratios of total leaked $CO_2$ to total injected $CO_2$ at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 19.5%, 11.5% and 2.8%, respectively.

Application of Flux Average Discharge Equation to Assess the Submarine Fresh Groundwater Discharge in a Coastal Aquifer (연안 대수층의 해저 담지하수 유출량 산정을 위한 유량 평균 유출량 방정식의 적용)

  • Il Hwan Kim;Min-Gyu Kim;Il-Moon Chung;Gyo-Cheol Jeong;Sunwoo Chang
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.105-119
    • /
    • 2023
  • Water supply is decreasing due to climate change, and coastal and island regions are highly dependent on groundwater, reducing the amount of available water. For sustainable water supply in coastal and island regions, it is necessary to accurately diagnose the current condition and efficiently distribute and manage water. For a precise analysis of the groundwater flow in the coastal island region, submarine fresh groundwater discharge was calculated for the Seongsan basin in the eastern part of Jeju Island. Two methods were used to estimate the thickness of the fresh groundwater. One method employed vertical interpolation of measured electrical conductivity in a multi depth monitoring well; the other used theoretical Ghyben-Herzberg ratio. The value using the Ghyben-Herzberg ratio makes it impossible to accurately estimate the changing salt-saltwater interface, and the value analyzed by electrical conductivity can represent the current state of the freshwater-saltwater interface. Observed parameter was distributed on a virtual grid. The average of submarine fresh groundwater discharge fluxes for the virtual grid was determined as the watershed's representative flux. The submarine fresh groundwater discharge and flux distribution by year were also calculated at the basin scale. The method using electrical conductivity estimated the submarine fresh groundwater discharge from 2018 to 2020 to be 6.27 × 106 m3/year; the method using the Ghyben-Herzberg ratio estimated a discharge of 10.87 × 106 m3/year. The results presented in this study can be used as basis data for policies that determine sustainable water supply by using precise water budget analysis in coastal and island areas.

Seasonal Variations of EWT and COP of GWHP System Using the Bank Infilterated Water from Stream-Alluvial Aquifer System (하천-충적대수층계의 강변여과수를 열원으로 이용하는 지하수 열펌프 시스템의 계절별 입구온도와 효율성 평가)

  • Hahn, Chan;Jeon, Jae-Soo;Yoon, Yoon-Sang;Han, Hyok-Sang;Hahn, Jeong-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.2
    • /
    • pp.39-51
    • /
    • 2007
  • Unconsolidated and permeable alluvial deposit composed of sand and gravel is distributed along the fluvial plain at the Iryong study area. Previous studies on the area show that a single alluvial well can produce at least 1,650m3d-1 of bank infilterated shallow groundwater(BIGW) from the deposit. This study is aimed to evaluate and simulate the influence that seasonal variation of water levels and temperatures of the river have an effect on those of BIGW under the pumping condition and also to compare seasonal variation of COPs when indirectly pumped BIGW or directly pumped surface water are used for a water to water heat pump system as an heat source and sink using 3 D flow and heat transport model of Feflow. The result shows that the magnitude influenced to water level of BIGW by fluctuation of river water level in summer and winter is about 48% and 75% of Nakdong river water level separately. Seasonal change of river water temperature is about $23.7^{\circ}C$, on other hand that of BIGW is only $3.8^{\circ}C$. The seasonal temperatures of BIGW are ranged from minimum $14.5^{\circ}C$ in cold winter(January) and maximum $18.3^{\circ}C$ in hot summer(July). It stands for that BIGW is a good source of heat energy for heating and cooling system owing to maintaining quite similar temperature($16^{\circ}C$) of background shallow groundwater. Average COPh in winter time and COPc in summer time of BIGW and surface water are estimated about 3.95, 3.5, and about 6.16 and 4.81 respectively. It clearly indicates that coefficient of performance of heat pump system using BIGW are higher than 12.9% in winter time and 28.1% in summer time in comparision with those of surface water.

  • PDF