• Title/Summary/Keyword: Aquifer flow

Search Result 236, Processing Time 0.027 seconds

Permeability, crossflow and storativity effects in two-layer aquifer system with fractional flow dimension (분할유동차원 2층 대수층에서의 투수성, 층간흐름, 저류성의 효과)

  • 함세영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.81-84
    • /
    • 2000
  • Two-layer aquifer system with fractional flow dimension is composed of contiguous two layers: Layer 1 (lower layer) and Layer 2 (upper layer) with different permeability and specific storage each other. For this aquifer system, we assume that groundwater flow originates only from Layer 1 on the pumping well. The aquifer system considers wellbore storage and skin effects on the pumping well. Dimensionless drawdown curves for different flow dimensions are analyzed for different lambda (λ, crossflow coefficient) values, kappa ($textsc{k}$, permeability ratio between Layer 1 and Layer 2) values and omega ($\omega$, storativity ratio between Layer 1 and Layer 2) values. The curves for Layer 1 and Layer 2 show characteristic trend each other.

  • PDF

Dual-permeability Fractal Model of Groundwater Flow in Fissured Aquifers (균열대수층내 지하수유동에 관한 이중투수율 프락탈모델)

  • Bidaux, Pascal;Hamm, Se-Yeong
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.433-442
    • /
    • 1997
  • A dual-permeability fractal model of fluid flow is proposed. The model simulates groundwater flow in fissured dual aquifer system composed of Aquifer 1 and Aquifer 2. For this model. groundwater flow originates only from Aquifer 1 on the pumping well. The model considers wellbore storage and skin effects at the pumping well and then shows exact drawdown at the early time of pumping. Type curves for different flow dimensions and for two cases are presented and analyzed. The case 1 represents the aquifer system which consists of Aquifer 1 with low permeability and high specific storage and Aquifer 2 with high permeability and low specific storage. The case 2 is inverse to the case 1. Dimensionless drawdown curves in Aquifer 1 and Aquifer 2 shows characteristic trend each other. Consequently, the model will be useful to analyze pumping test data of different draw down patterns on the pumping well and observation wells.

  • PDF

A Studyon the Movment of Ground Water of Banayweol Formation (반야월층(半夜月層)의 지하수운동(地下水運動)에 관(關)한 연구(硏究))

  • Kim, Yong Ki
    • Economic and Environmental Geology
    • /
    • v.9 no.4
    • /
    • pp.225-240
    • /
    • 1976
  • This study deals with the flow of bed rock ground water of Banyaweol Formation, which is presently cleared up as a laminar flow. The result obtained may be summarized as the following. 1) The Banyaweol Formation consists mainly of thin-bedded, green to blackish green shale, mudstone, and marl. The marl and mudstone alternatively occur with shale. The marl and mudstone form a aquifer of Banyaweol Formation. In this study, a group of aquifer is in convenience named as a aquifer zone. The aquifer occurs in lenticular form. The aquifer seems to be a type of artesian aquifer because it is covered with aquicludes, but it actually forms a unconfined aquifer because its piezometric surface stays under the lower aquiclude. The lowering of piezometric level is formed because of leakage of the ground water to the lower aquifer undersaturated. 2) The coefficient of permeability of Banyaweol Formation's ground water body (K) is derived by using Dupuit's equation as the following ${\log}K=\frac{CK^2-dK+f}{aK-b}\;\(M=1.365(2H-s)s\\M={\log}1.956s{\sqrt{H}}r\)$ here, $$a=\sum_{1}M_iG_i$$ $$b={\frac{1}{2}log{\sum_{i}}Q_i{^2}$$ $$c=2{\sum_{i}}M_i{^2}$$ $$d=loge{\sum_{i}}M_{i}Q_{i}+2{{\sum_{i}}N_{i}Q_{i}$$ $$f=loge{\sum_{i}}Q_i{^2}N_i$$ If the measured values substituted for the above equation, the coefficient of permeability of the aquifer is 4.1m/day. The coefficient of storge of the aquifer is $2.8{\times}10^{-4}$ if the measured values substituted for Theis's equation. Using the above constants, the filtration velocity of the aquifer is $2.1{\times}1O^{-1}m/day$and the daily flow quantity of the ground water is $847.38m^{3}/day$. 3) In order to understand the time necessary for a circulation of ground water body, the contents of tritum contained in the ground water are measured as 2.3 T.U. at the Korea Atomic Energy Research Institute. Before 1952, the average concentration of tritium per year in groundwater was reported as 10T. u., taking it as the standard, the groundwater of the present study 26.25 years old. Therofore, the groundwater of the Banyaweol Formation is judged as an relatively old groundwater. It is characteristic that the ground water of Banyawol Formation is laminar flow as well as unconfined aquifer and ground water flow of relatively long time. 4) The nature, means of flow, and circulation of Banyaweol Formation's ground water body make it possible set up this ground water body as a ground water system.

  • PDF

Analysis of stream-aquifer using nonlinear Boussinesq equation (비선형 Boussinesq방정식을 이용한 유로대수층 해석)

  • 정재성;김민환;방경미
    • Journal of Environmental Science International
    • /
    • v.11 no.1
    • /
    • pp.57-61
    • /
    • 2002
  • To investigate the flow characteristics by the water stage variation between stream-aquifer, the new solution of nonlinear Boussinesq equation was derived and extended using the Boltzmann transformation. The soundness of the analytic solution obtained from this study was examined by the comparison with the linearized analytic solution and the numerical solution by finite difference method. And the movement, velocity, flowrate and volume of flow caused by the stage variation of stream and the existence of regional gradient were estimated. This new analytic solution can express the groundwater movement between stream-aquifer. So, it might be helpful to manage water environment.

An Experimental Study on the Thermal Behavior of Aquifer Thermal Energy Storage System (대수층 축열시스템의 열거동에 관한 실험적 연구)

  • 이세균;문병수;남승백;김기덕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1780-1787
    • /
    • 1992
  • Experiments have been performed on the thermal behavior in a liquid saturated porous medium in a system to simulate a single well aquifer thermal energy storage system. The principal interests in this study are the combined effects of forced and natural convection. Significant buoyancy flow due to natural convection is developed quickly as the temperature difference between the injection and original aquifer temperature increases. Theoretical model under simplified assumptions (called simple buoyancy flow model in this study) has been developed. The results of this model agree well with the experiments. The effects of buoyancy flow on the recovery factor are also examined in this study.

Simulation of aquifer temperature variation in a groundwater source heat pump system with the effect of groundwater flow (지하수 유동 영향에 따른 지하수 이용 열펌프 시스템의 대수층 온도 변화 예측 모델링)

  • Shim, Byoung-Ohan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.701-704
    • /
    • 2005
  • Aquifer Thermal Energy Storage (ATES) can be a cost-effective and renewable geothermal energy source, depending on site-specific and thermohydraulic conditions. To design an effective ATES system having influenced by groundwater movement, understanding of thermo hydraulic processes is necessary. The heat transfer phenomena for an aquifer heat storage are simulated using FEFLOW with the scenario of heat pump operation with pumping and waste water reinjection in a two layered confined aquifer model. Temperature distribution of the aquifer model is generated, and hydraulic heads and temperature variations are monitored at the both wells during 365 days. The average groundwater velocities are determined with two hydraulic gradient sets according to boundary conditions, and the effect of groundwater flow are shown at the generated thermal distributions of three different depth slices. The generated temperature contour lines at the hydraulic gradient of 0.00 1 are shaped circular, and the center is moved less than 5m to the groundwater flow direction in 365 days simulation period. However at the hydraulic gradient of 0.01, the contour center of the temperature are moved to the end of boundary at each slice and the largest movement is at bottom slice. By the analysis of thermal interference data between two wells the efficiency of the heat pump system model is validated, and the variation of heads is monitored at injection, pumping and no operation mode.

  • PDF

Transient Groundwater Flow Modeling in Coastal Aquifer

  • Li Eun-Hee;Hyun Yun-Jung;Lee Kang-Kun;Park Byoung-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.293-297
    • /
    • 2006
  • Submarine groundwater discharge (SGD) and the interface between seawater and freshwater in an unconfined coastal aquifer was evaluated by numerical modeling. A two-dimensional vertical cross section of the aquifer was constructed. Coupled flow and salinity transport modeling were peformed by using a numerical code FEFLOW In this study, we investigated the changes in groundwater flow and salinity transport in coastal aquifer with hydraulic condition such as the magnitude of recharge flux, hydraulic conductivity. Especially, transient simulation considering tidal effect and seasonal change of recharge rate was simulated to compare the difference between quasi-steady state and transient state. Results show that SGD flux is in proportion to the recharge rate and hydraulic conductivity, and the interface between the seawater and the freshwater shows somewhat retreat toward the seaside as recharge flux increases. Considered tidal effect, SGD flux and flow directions are affected by continuous change of the sea level and the interface shows more dispersed pattern affected by velocity variation. The cases which represent variable daily recharge rate instead of annual average value also shows remarkably different result from the quasi-steady case, implying the importance of transient state simulation.

  • PDF

Numerical Simulation of Water Table Drawdown due to Groundwater Pumping in a Contaminated Aquifer System at a Shooting Test Site, Pocheon, Korea

  • Kihm, Jung-Hwi;Hwang, Gisub
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.247-257
    • /
    • 2021
  • The study area has been contaminated with explosive materials and heavy metals for several decades. For the design of the pump and treat remediation method, groundwater flow before and during groundwater pumping in a contaminated aquifer system was simulated, calibrated, and predicted using a generalized multidimensional hydrological numerical model. A three-dimensional geologic formation model representing the geology, hydrogeology, and topography of the aquifer system was established. A steady-state numerical simulation with model calibration was performed to obtain initial steady-state spatial distributions of groundwater flow and groundwater table in the aquifer system before groundwater pumping, and its results were illustrated and analyzed. A series of transient-state numerical simulations were then performed during groundwater pumping with the four different pumping rates at a potential location of the pumping well. Its results are illustrated and analyzed to provide primary reference data for the pump and treat remediation method. The results of both steady-state and transient-state numerical simulations show that the spatial distribution and properties of the geologic media and the topography have significant effects on the groundwater flow and thus depression zone.

Groundwater Flow Modeling for a Finite Unconfined Sandy Aquifer in a Laboratory Scale (사질 자유면 대수층 모형에서의 지하수 모델링)

  • 이승섭;김정석;김동주
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.188-193
    • /
    • 1999
  • Transport of pollutants in aquifer largely depends on groundwater flow which is governed by aquifer hydraulic parameters. Determination of these parameters and associated groundwater modeling become essential for adequate remediation of contaminate groundwater. The objective of this paper is to analyze groundwater flow and determine the optimum hydraulic parameters by performing groundwater modeling based on sensitivity analysis for unconfined sandy gavel aquifer constructed in a laboratory scale under various boundary condition. Results revealed that the simulated drawdown was lower than the observed drawdown irrespective of boundary conditions. and specific yield (S$_{y}$) had less effect on the grondwater flow than permeability (K) in the aquifer. Water balance analysis showed that the measured drawdown in neighboring observation wells during pumping was higher than either simulated or recovered water table. The indicated that a difference might exist in the water tables between aquifer and wells. The difference was investigated by time domain reflectometry (TDR) measurements on water contents in the region of water table and capillary fringe, and explained by a delayed response of water table during gravitational drainage as the water table was lowered as a result of pumping.g.

  • PDF

Modeling the Groundwater Flow in the Near-field of the Near-surface Disposal System (표층처분시스템 근계영역의 지하수 유동에 대한 모델링 연구)

  • Kim, Jung-Woo;Bang, Je Heon;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.119-131
    • /
    • 2020
  • A numerical model was developed using COMSOL Multiphysics to evaluate groundwater flow that causes radionuclide migration in the unsaturated zone of a near-surface disposal facility, which is considered as a domestic low and an intermediate-level radioactive waste disposal facility. Each scenario was modeled by constructing a two-dimensional domain that included the disposal vault, backfill, disposal cover, and unsaturated aquifer. A comparison of the continuous and intermittent rainfall conditions exhibited no significant difference in any of the factors considered except the wave pattern of water saturation. The input data, such as porosity and residual water content of the unsaturated aquifer, were observed to not have a significant effect on the groundwater flow. However, the hydraulic conductivity of the unsaturated aquifer was found to have a significant effect on the groundwater flow. Therefore, it is necessary to assess the hydraulic conductivity of an unsaturated aquifer to determine the extent of groundwater infiltration into the disposal vault.