• Title/Summary/Keyword: Aqueous phase

Search Result 1,166, Processing Time 0.024 seconds

Concentration and Environmental Loading of Veterinary Antibiotics in Agricultural Irrigation Ditches

  • Kim, Sung-Chul;Chung, Doug Young;Kim, Kye Hoon;Lee, Ja Hyun;Kim, Hyo Kyung;Yang, Jae E.;Ok, Yong Sik;Almarwei, Yaser A.O.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.867-876
    • /
    • 2012
  • The concentration of veterinary antibiotics in aqueous and sediment matrices was measured in agricultural irrigation ditches bordering several animal-feeding operations (AFOs) and then compared to its concentration in the watershed. Analytical determination in aqueous samples was based on solid phase extraction (SPE) and appropriate buffer solutions were used to extract residuals in sediment samples. Separation and detection of extracted veterinary antibiotics were performed with high performance liquid chromatograph tandem mass spectrometry (HPLC/MS/MS). In general, higher concentrations of antibiotic were observed in the aqueous phase of irrigation ditches, with the highest concentration of erythromycin hydrochloride (ETM-$H_2O$) of $0.53{\mu}g\;L^{-1}$, than in aqueous watershed samples. In contrast, higher concentrations were measured in river sediment than in irrigation ditch sediment with the highest concentration of oxytetracycline of $110.9{\mu}g\;kg^{-1}$. There was a high calculated correlation ( > 0.95) between precipitation and measured concentration in aqueous samples from the irrigation ditches for five of the ten targeted veterinary antibiotics, indicating that surface runoff could be an important transport mechanism of veterinary antibiotics from field to environment. Further, environmental loading calculation based on measured concentrations in aqueous samples and flow information clearly showed that irrigation ditches were 18 times greater than river. This result suggests the likelihood that veterinary antibiotics can be transported via irrigation ditches to the watershed. The transport via surface runoff and likely environmental loading via irrigation ditches examined in this study helps identify the pathway of veterinary antibiotics residuals in the environment.

A Study of the Factors Affecting the Backward Transfer of BSA from AOT Reverse Micellar Solutions (AOT 역미셀 용액으로부터 BSA의 역추출에 영향을 미치는 인자들에 관한 연구)

  • 노선균;강춘형
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.649-657
    • /
    • 2000
  • The factors affecting the back-extraction efficiency of Bovine Serum Albumin (BSA, Mw. 65kDa, pl 4.9) solubilized in an AOT reverse micellar solution, prepared by the injection method, to an excess aqueous phase were investigated. In particular, the effects of pH, the types of salts, alcohols added as cosurfactants, and their concentrations in the aqueous phase were examined. Furthermore, by comparing the CD spectra of the back-extracted BSA and the feed BSA, the structural changes of BSA during the extraction process were determined. The addition of 1:1 salt such as KCl or NaCl to the aqueous phase resulted in almost a 100% extraction to the aqueous phase at a pH higher than its isoelectric point pl. This high efficiency of back-extraction might be due to the change in the interactions between the protein and micellar aggregates driven by the added salt. For 1:2 salts like $CaCl_2$ and $MgCl_2$, BSA was back-extracted with lower than 20% extraction efficiency. Maximum extraction efficiencies were attained at about pH=7 and pH=8 for monovalent and divalent salts, respectively. The addition of alcohols as cosurfactants led to an improvement in monovalent and divalent salts, respectively. From the CD spectra of BSA extracted to the aqueous phase, it was observed that denaturation of BSA was not significant. In certain back-extraction conditions, the extracted BSA showed even higher activity than the feed BSA.

  • PDF

Synthesis and Evaluation of Molecularly Imprinted Polymeric Microspheres for Chloramphenicol by Aqueous Suspension Polymerization as a High Performance Liquid Chromatography Stationary Phase

  • Zhang, Yan;Lei, Jiandu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1839-1844
    • /
    • 2013
  • Molecularly imprinted microsphere for chloramphenicol (CAP) with high adsorption capacity and excellent selectivity is prepared by aqueous suspension polymerization, in which chloramphenicol is used as template molecule and ethyl acetate as porogen. The CAP-imprinted microspheres are used as high performance liquid chromatography (HPLC) stationary phase and packed into stainless steel column ($150mm{\times}4.6mm$ i.d.) for selective separation of chloramphenicol. HPLC analysis suggests that chloramphenicol can be distinguished from not only its structural analogs but also other broad-spectrum antibiotic such as erythromycin and tetracycline. In addition, the binding experiments of CAP-imprinted microspheres are carried out in ethanol/water (1:4, V:V), the results indicate that the maximum apparent static binding capacity of molecularly imprinted microspheres is up to 66.64 mg $g^{-1}$ according to scatchard model.

The New Strategy of Formulation of Human Growth Hormone Aggregate within PLGA Microspheres for Sustained Release

  • Kim, Hong-Gi;Park, Tae-Gwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.541-545
    • /
    • 2000
  • For the sustained release formulation of recombinant human growth hormone (rhGH), dissociable rhGH aggregates were microencapsulated within poly(D,L-lactic-co-glycolic acid) [PLGA] microparticles. rhGH aggregates with 2 - 3 m Particle diameter were first produced by adding a small volume of aqueous rhGH solution into a partially water miscible organic solvent phase(ethyl acetate) containing PLGA. These rhGH aggregates were then microencapsulated within PLGA polymer phase by extracting ethyl acetate into an aqueous phase pre-saturated with ethyl acetate. The resultant microparticles were 2 - 3 m in diameter similar to the size of rhGH aggregates, suggesting that PLGA polymer was coated around the protein aggregates. Release profiles of rhGH from these microparticles were greatly affected by changing the volume of the incubation medium. The release rhGH species consisted of mostly monomeric form with having a correct conformation. This study reveals that sustained rhGH release could be achieved by microencapsulating reversibly dissociable protein aggregates within biodegradable polymers.

  • PDF

Metal Nanoparticles in the Template of Poly(2-ethyl-2-oxazoline)-block-Poly(${\varepsilon}$-caprolactone) Micelle

  • Park, Chi-Young;Rhue, Mi-Kyo;Lim, Jin-O;Kim, Chul-Hee
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.39-43
    • /
    • 2007
  • The amphiphilic block copolymer (PEtOz-PCL) of poly(2-ethyl-2-oxazoline) (PEtOz) and poly(${\varepsilon}$-caprolactone) (PCL) formed spherical micellar structures with an average diameter of 26 nm in aqueous phase. Au and Pd nanoparticles with an average diameter of $2{\sim}3nm$ were prepared by using the PEtOz-PCL micelle consisting of a PEtOz shell and PCL core. The Au nanoparticles of PEtOz-PCL micelles in aqueous phase could be transferred into organic phase by using n-dodecanethiol. The use of the Pd-NP/PEtOz-PCL micelle as a nanoreactor for Suzuki cross-coupling reaction was investigated.

Effect of rheological properties on chemical absorption of carbon dioxide with MEA

  • Park, Sang-Wook;Kim, Tae-Young;Park, Byoung-Sik;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.1
    • /
    • pp.35-45
    • /
    • 2004
  • Rates of chemical absorption of $CO_2$ in water-in-oil (w/o) emulsion were measured in a flat-stirred vessel at $25^{\circ}C$. The w/o emulsion was composed of aqueous monoethanolamine (MEA) droplets as a dispersed phase and non-Newtonian viscoelastic benzene solutions of polybutene (PB) and polyisobutylene (PIB) as a continuous phase. The liquid-side-mass transfer coefficient ($k_L$) was obtained from the dimensionless empirical equation containing Deborah number expressed as the properties of pseudoplasticity of the non-Newtonian liquid. $k_L$ was used to estimate the enhancement factor due to chemical reaction between $CO_2$ and MEA in the aqueous phase. PIB with elastic property of non-Newtonian liquid made the rate of chemical absorption of $CO_2$ accelerate compared with Newtonian liquid.

The Metabolism of (4-$^{14}C$) Cholesterol on Photoperiodism in Solanum andigena

  • Bae, Moo;Mercer, E.I.
    • Nuclear Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.179-183
    • /
    • 1970
  • (4-$^{14}$ C) Cholesterol was administered to the leaves of Solanum andigena during photoperiodic induction. Radioactive products converted from cholesterol were studied by thin-layer chromatography and gas-chromatography. The major products from cholesterol were shown to be esterified cholesterol in lipid and solanine in the aqueous ethanolic phase in SD-and LD-leaves. The radioactive solanidine was isolated by chromatography and crystallized to constant specific activity. Short-day condition did not stimulate the conversion of cholesterol into solanine in the leaves, but both groups of leaves converted cholesterol into solanine at the about same rate. Incorporation of radioactivity into aqueous ethanolic phase of tubers and stolons, containing storied glycoalkaloid, was very much higher than that into lipid phase, contrary to those in the leaves and the stems.

  • PDF

The Phase-Shift Method for the Langmuir Adsorption Isotherms at the Noble Metal (Au, Rh) Electrode Interfaces (귀금속(Au, Rh) 전극계면에서 Langmuir 흡착등온식에 관한 위상이동방법)

  • Chun, Jang H.;Jeon, Sang K.;Lee, Jae H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.119-129
    • /
    • 2003
  • The Langmuir adsorption isotherms of the over-potentially deposited hydrogen (OPD H) fur the cathodic $H_2$ evolution reaction (HER) at the poly-Au and $Rh|0.5M\;H_2SO_4$ aqueous electrolyte interfaces have been studied using cyclic voltammetric and ac impedance techniques. The behavior of the phase shift $(0^{\circ}{\leq}{-\phi}{\leq}90^{\circ})$ for the optimum intermediate frequency corresponds well to that of the fractional surface coverage $(1{\geq}{\theta}{\geq}0)$ at the interfaces. The phase-shift profile $({-\phi}\;vs.\;E)$ for the optimum intermediate frequency, i.e., the phase-shift method, can be used as a new electrochemical method to determine the Langmuir adsorption isotherm $({\theta}\;vs.\;E)$ of the OPD H for the cathodic HER at the interfaces. At the poly-Au|0.5M $H_2SO_4$ aqueous electrolyte interface, the equilibrium constant (K) and the standard free energy $({\Delta}G_{ads})$ of the OPD H are $2.3\times10^{-6}$ and 32.2kJ/mol, respectively. At the poly-Rh|0.5M $H_2SO_4$ aqueous electrolyte interface, K and ${\Delta}G_{ads}$ of the OPD H are $4.1\times10^4\;or\;1.2\times10^{-2}$ and 19.3 or 11.0kJ/mol depending on E, respectively. In contrast to the poly-Au electrode interface, the two different Langmuir adsorption isotherms of the OPD H are observed at the poly-Rh electrode interface. The two different Langmuir adsorption isotherms of the OPD H correspond to the two different adsorption sites of the OPD H on the poly-Rh electrode surface.

Kinetics of Horseradish Peroxidase-Catalyzed Nitration of Phenol in a Biphasic System

  • Kong, Mingming;Zhang, Yang;Li, Qida;Dong, Runan;Gao, Haijun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.297-305
    • /
    • 2017
  • The use of peroxidase in the nitration of phenols is gaining interest as compared with traditional chemical reactions. We investigated the kinetic characteristics of phenol nitration catalyzed by horseradish peroxidase (HRP) in an aqueous-organic biphasic system using n-butanol as the organic solvent and ${NO_2}^-$ and $H_2O_2$ as substrates. The reaction rate was mainly controlled by the reaction kinetics in the aqueous phase when appropriate agitation was used to enhance mass transfer in the biphasic system. The initial velocity of the reaction increased with increasing HRP concentration. Additionally, an increase in the substrate concentrations of phenol (0-2 mM in organic phase) or $H_2O_2$ (0-0.1 mM in aqueous phase) enhanced the nitration efficiency catalyzed by HRP. In contrast, high concentrations of organic solvent decreased the kinetic parameter $V_{max}/K_m$. No inhibition of enzyme activity was observed when the concentrations of phenol and $H_2O_2$ were at or below 10 mM and 0.1 mM, respectively. On the basis of the peroxidase catalytic mechanism, a double-substrate ping-pong kinetic model was established. The kinetic parameters were ${K_m}^{H_2O_2}=1.09mM$, ${K_m}^{PhOH}=9.45mM$, and $V_{max}=0.196mM/min$. The proposed model was well fit to the data obtained from additional independent experiments under the suggested optimal synthesis conditions. The kinetic model developed in this paper lays a foundation for further comprehensive study of enzymatic nitration kinetics.

Selection of Suitable Micellar Catalyst for 1,10-Phenanthroline Promoted Chromic Acid Oxidation of Formic Acid in Aqueous Media at Room Temperature

  • Ghosh, Aniruddha;Saha, Rumpa;Ghosh, Sumanta K.;Mukherjee, Kakali;Saha, Bidyut
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.703-711
    • /
    • 2013
  • In the present investigation, kinetic studies of oxidation of formic acid with and without catalyst and promoter in aqueous acid media were studied under the pseudo-first order conditions [formic acid]T ${\gg}[Cr(VI)]_T$ at room temperature. In the 1,10-phenanthroline (phen) promoted path, the cationic Cr(VI) phen complex is the main active oxidant species undergoes a nucleophilic attack by the substrate to form a ternary complex which subsequently experiences a redox decomposition through several steps leading to the products $CO_2$ and $H_2$ along with the Cr(III) phen complex. The anionic surfactant (i.e., sodium dodecyl sulfate, SDS) and neutral surfactant (i.e., Triton X-100, TX-100) act as catalyst and the reaction undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Whereas the cationic surfactant (i.e., N-cetyl pyridinium chloride, CPC) acts as an inhibitor restricts the reaction to aqueous phase. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. The neutral surfactant TX-100 has been observed as the suitable micellar catalyst for the phen promoted chromic acid oxidation of formic acid.