• Title/Summary/Keyword: Aqueous medium

Search Result 333, Processing Time 0.025 seconds

Application of AuNPs immobilized on UV Cross-linked P4VP Thin Film as pH Nanosensors (pH 나노센서로의 응용을 위한 UV-가교 P4VP 박막에 고정한 금 나노입자의 특성)

  • Kim, Min-Sung;Jeong, Yeon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.1010-1018
    • /
    • 2008
  • In this report, we describe the use of gold nanoparticles (AuNPs) immobilized on pH. responsive, cross-linked poly(4-vinylpyridine) (P4VP) thin films, as a potential application for pH nanosensors. The methodology is based on the variation in surface plasmon resonance of immobilized AuNPs with changing the interparticle distances, caused by the swelling/deswelling of the pH responsive P4VP polymer films. The change in optical properties of the immobilized AuNPs in response to the pH of surrounding media was investigated by a simple yet powerful tool; UV-vis absorption spectroscopy. The swelling of the P4VP chains at pH 2 causes an increase in the interparticle distances of immobilized AUNPS ($\sim20nm$) and hence leads to a blue shift of 48 nm in their surface plasmon resonance band peak. On the other hand, when the surrounding media was altered from pH 2 to 10, a red shift of absorption maxima was observed. The changes were rapid, and the effect was reversible. This system could prove to be useful in fabricating nanosensors for detecting the pH or pH changes of surrounding aqueous medium.

Production of Red Pigment from Marine Bacterium Utilizing Colloidal Chitin. (Colloidal Chitin을 자화하는 해양세균으로부터 적색색소의 생산)

  • 류병호;김민정
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.5
    • /
    • pp.264-269
    • /
    • 2000
  • This study is that of providing a fairly practical practival guide to the use of natural pigment in food industry. A strain isolated from marine resources was carried out the production of red pigment. The pigment showed UV absorption maxima at 520 and 550 nm. The color intensity in aqueous solution was fairly stable in the ranges of pH 5~8. The strain KS-97 produced a maximum yield of red pigment at$ 25^{\circ}C$ for 72 hrs with pH 7.0. The strain KS-97 was iden-tified a Bacillus sp. based on morphological and biochemical characterization such as a rod from, motility, spore for-mation, Gram positive and catalase production. The production of red pigment indicated that the strain Ks-97 utilized at thigh concentration of colloidal chitin as carbon sources obtained maximum yield of red pigment at $25^{\circ}C$ for 72 hrs. The highest production of red pigment was observed with cultivation in medium containing 20% colloi-dal chitin, 2.5g polypeptone, 2.5g yeast extract, 1.0g $KH_2$$PO_4$, 0.01g $MgSO_4$.$6H_2$O, 0.01g $ZnSO_4$, 0.01 g $MnSO_4$(per 1).

  • PDF

Reaction of N-Bromosuccinimide with 8-Aminoquinoline -New Micro-Determination of 8-Aminoquinoline- (N-Bromosuccinimide와 8-Aminoquinoline의 반응(反應)에 대(對)하여 -8-Aminoquinoline의 새로운 미량정량법(微量定量法)-)

  • Koh, Ik-Bai
    • Applied Biological Chemistry
    • /
    • v.17 no.3
    • /
    • pp.184-192
    • /
    • 1974
  • In the presence of 2N hydrochloric acid, N-bromosuccinimide reacts with 8-aminoquinoline to yield 5,7-dibromo-8-aminoquinoline in aqueous medium. This reaction proceeds readily and quantitatively at room temperature. The mechanism of this reaction is investigated in this work. A new titrimetric method for the micro-determination of 8-aminoquinoline by the use of N-bromosuccinimide is described. The proposed method is quite simple, rapid and yet shows relatively high accuracy over the suggested range. The experimental error does not exceed ${\pm}1.78$ per cent. Results are reported for the comparative analysis of 8-aminoquinoline by the proposed method and by bromimetry.

  • PDF

Grafting of Glycidyl Methacrylate upon Coralline Hydroxyapatite in Conjugation with Demineralized Bone Matrix Using Redox Initiating System

  • Murugan, R.;Rao, K.Panduranga
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.14-18
    • /
    • 2003
  • Grafting of glycidyl methacrylate (GMA) upon coralline hydroxyapatite in conjugation with demineralized bone matrix (CHA-DBM) using equal molar ratio of potassium persulfate/sodium metabisulfite redox initiating system was investigated in aqueous medium. The optimum reaction condition was standardized by varying the concentrations of backbone, monomer, initiator, temperature and time. The results obtained imply that the percent grafting was found to increase initially and then decrease in most of the cases. The optimum temperature and time were found to be 50 $^{\circ}C$ and 180 min, respectively, to obtain higher grafting yield. Fourier transform infrared (FT-IR) spectroscopy and X-ray powder diffraction (XRD) method were employed for the proof of grafting. The FT-IR spectrum of grafted CHA-DBM showed epoxy groups at 905 and 853 $cm^{-1}$ / and ester carbonyl group at 1731 $cm^{-1}$ / of poly(glycidyl methacrylate) (PGMA) in addition to the characteristic absorptions of CHA-DBM, which provides evidence of the grafting. The XRD results clearly indicated that the crystallographic structure of the grafted CHA-DBM has not changed due to the grafting reaction. Further, no phase transformation was detected by the XRD analysis, which suggests that the PGMA is grafted only on the surface of CHA-DBM backbone. The grafted CHA-DBM will have better functionality because of their surface modification and hence they may be more useful in coupling of therapeutic agents through epoxy groups apart from being used as osteogenic material.

Synthesis of Polystyrene Nanoparticles with Monodisperse Size Distribution and Positive Surface Charge Using Metal Stearates

  • Kim, Mi-Sun;Kim, Seok-Ki;Lee, Jun-Young;Cho, Seung-Hyun;Lee, Ki-Hoon;Kim, Jun-Kyung;Lee, Sang-Soo
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.178-181
    • /
    • 2008
  • Polystyrene (PS) nanospheres with a monodisperse size distribution, positive surface charge and high molecular weight were successfully synthesized using various types of metal stearates in an aqueous NaOH medium. The diameter of the PS nanospheres was controlled from 80 to 450 nm by changing the type of metal stearate. It was also found that controlling the NaOH concentration in solution was important for producing monodisperse PS nanoparticles. The nanospheres prepared with zinc stearate possessed a positive surface charge of 60 to 80 mV, confirming that PS particles were functionalized with metal stearates. It is believed that the metal stearates provide PS particles with not only colloidal stability but also a positive surface charge.

Dyeing Properties of Nylon 6 and Polyester Fabrics with Vat Dyes - Effect of Composition of Reducing Agent and Alkali on Color Change - (배트염료에 의한 나일론과 폴리에스테르 섬유의 염색성 - 색상 변화에 미치는 하이드로슬파이트와 NaOH의 영향 -)

  • ;;;Tomiji Wakida
    • Textile Coloration and Finishing
    • /
    • v.14 no.5
    • /
    • pp.284-293
    • /
    • 2002
  • Nylon 6 and polyester taffeta fabrics are dyed in aqueous medium with vat dyes such as Indanthren Red FBB, Mikethren Blue ACE and Mikethren Blue HR varying the compositions of sodium hydrosulfite and NaOH. Also nylon UMF nonwoven and polyester UMF knitted fabrics are dyed with metal complex and disperse dyes as a reference, and the wash and rubbing fastnesses for these dyes are investigated. In vat dyeing of polyester and nylon taffeta, an optimum composition of sodium hydrosulfite/NaOH is existed at a range of 1∼2wt%/0.2wt%. A good build-up property for Mikethren Blue ACE on nylon 6 UMF nonwoven fabric is shown at high temperature. Vat dyeing of polyester with Mikethren Blue Ace shows a good color shade in a higher temperature, while dyeing with Mitsui Blue HR shows low temperatures. Vat dyes In dyeing of both nylon 6 UMF nonwoven and polyester UMF knitted fabrics have a better wash fastnesses compared with metal complex or disperse dyes.

N-Acyl Amino Acid Surfactant(15) Synthesis and Properties of Sodium N-(2-Dodecyl Succinoyl) l-Glutamate (N-아실아미노산계 계면활성제 (제15보) Sodium N-(2-Dodecyl Succinoyl) l-Glutamate의 합성 및 계면성)

  • Kwack, Kwang-Soo;Yoon, Young-Kyoon;Jeong, Noh-Hee;Kim, Duck-Gwon;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.55-59
    • /
    • 2001
  • These N-acyl amino acid surfactants is normally produced by reaction of acid anhydride with sodium ${\ell}-glutamate$ hydrolysates under Schotten-Baumann condition i.e., in alkaline aqueous medium. To avoid using fatty acid chlorides, acylations were also carried out with the fatty acids themselves or with their methyl esters, but unfortunately these methods cannot be used in practice, dodecenyl succinic anhydride, was to be studied for their suitability as acylating agents the production if acylated glutamine hydrolysates. The surface activities including surface tension forming power, forming stability and emulsifying power were measured. The experimental results revealed that the products have a good emulsifying power. Thus, there derivatives will be expected to be used an emulsifying agent for O/W type cosmetic emulsion.

Analysis of Optical Characteristics of Oil Immersion Lens in Aqueous Environment (액상유체 오일 이멀전 렌즈의 광학 물성치 해석)

  • Choi, Hae Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.18-23
    • /
    • 2019
  • The oil immersion method can be used to create objective lenses with long working distances without sacrificing the focusing resolution for laser processing. In this study, a space in which air or oil can be filled was formed in the middle of a lens for analyzing the optical properties of a liquid-oil immersion lens. As the refractive media, air and oils of different refractive index values (1.2 and 1.5, respectively) were used. A simulation was conducted in the ZEMAX software environment using the ray-tracing technique, and the performance of the oil immersion lens was verified by determining its image distortion and focal length (FL) in each medium. In the case of air, the calculated FL was 0.813 mm, whereas the imaged FLs were 1.594 mm and 8.126 mm when the refraction indices were 1.2 and 1.5, respectively. The FL of an oil immersion lens could be increased considerably. In terms of image distortion, the oil immersion lens exhibited little distortion at the center in all cases, but different degrees of image distortion were observed at different points away from the center depending on the refraction index degree.

Preparation and Evaluation of Aceclofenac Microemulsion for Transdermal Delivery System

  • Yang, Jae-Heon;Kim, Young-Il;Kim, Kyung-Mi
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.534-540
    • /
    • 2002
  • To develop novel transdermal formulation for aceclofenac, microemulsion was prepared for increasing its skin permeability. Based on solubiity and phase studies, oil and surfactant was selected and composition was determined. Microemulsion was spontaneously prepared by mixing ingredients and the physicochemical properties such was investigated. The mean diameters of microemulsion were approximately 90 nm and the system was physically stable at room temperature at least for 3 months. In addition, the in vitro and in vivo performance of microemulsion formulation was evaluated. Aceclofenac was released from microemulsion in acidic aqueous medium, and dissolved amounts of aceclofenac was approximately 30% after 240 min. Skin permeation of aceclofenac from microemulsion formulation was higher than that of cream. Following transdermal application of aceclofenac preparation to delayed onset muscle soreness, serum creatine phosphokinase and lactate dehydrogenase activity was significantly reduced by aceclofenac. Aceclofenac in microemulsion was more potent than cream in the alleviation of muscle pain. Therefore, the microemulsion formulation of aceclofenac appear to be a reasonable transdermal delivery system of the drug with enhanced skin permeability and efficacy for the treatment of muscle damage.

Deactivation of Porous Photocatalytic Particles During a Wastewater Treatment Process

  • Cho, Young-Sang;Nam, Soyoung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.185-197
    • /
    • 2019
  • Deactivation of porous photocatalytic materials was studied using three types of microstructured particles: macroporous titania particles, titania microspheres, and porous silica microspheres containing CNTs and $TiO_2$ nanoparticles. All particles were synthesized by emulsion-assisted self-assembly using micron-sized droplets as micro-reactors. During repeated cycles of the photocatalytic decomposition reaction, the non-dimensionalized initial rate constants (a) were estimated as a function of UV irradiation time (t) from experimental kinetics data, and the results were plotted for a regression according to the exponentially decaying equation, $a=a_0\;{\exp}(-k_dt)$. The retardation constant ($k_d$) was then compared for macroporous titania microparticles with different pore diameters to examine the effect of pore size on photocatalytic deactivation. Nonporous or larger macropores resulted in smaller values of the deactivation constant, indicating that the adsorption of organic materials during the photocatalytic decomposition reaction hinders the generation of active radicals from the titania surface. A similar approach was adopted to evaluate the activation constant of porous silica particles containing CNT and $TiO_2$ nanoparticles to compare the deactivation during recycling of the photocatalyst. As the amount of CNTs increased, the deactivation constant decreased, indicating that the conductive CNTs enhanced the generation of active radicals in the aqueous medium during photocatalytic oxidation.