• Title/Summary/Keyword: Aqueous additive

Search Result 94, Processing Time 0.024 seconds

The Effect of Ice Adhesion according to Functional Group and Chemical Structure of Additive (화합물 작용기와 화학구조에 따른 수용액의 빙부착 억제 효과)

  • Chung, Dong-Yeol;Peck, Jong-Hyeon;Kang, Chae-Dong;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.8
    • /
    • pp.607-614
    • /
    • 2007
  • This paper investigated that the functional group and chemical structure of additives affect ice adhesion in aqueous solutions cooling with stirring. In order to compare the effect on the ice adhesion in aqueous solutions, the functional group like carboxyl (-COOH), hydroxyl(-OH) or amine($-NH_{2}$) one were compared each other. Among the functional group, the strength of the hydrogen bonding force order is amine, hydroxyl and carboxyl one. It supports that ethylene diamine 7 mass% solution including amine group was effective to suppress the ice adhesion, though it is corrosive. Also, the ice adhesion were effectively resisted and formed lots of ice slurries in cooling experiment of 7 mass% solution of 1, 2-and 1, 3-propanediol which is different molecular structure but equal molecular weight each other.

The Effect of Additives on the Performance of Aqueous Organic Redox Flow Battery Using Quinoxaline and Ferrocyanide Redox Couple (수계 유기 레독스 흐름 전지 성능에서의 첨가제 효과)

  • Chu, Cheonho;Lee, Wonmi;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.847-852
    • /
    • 2019
  • In this study, the effect of additives on the performance of aqueous organic redox flow battery (AORFB) using quinoxaline and ferrocyanide as active materials in alkaline supporting electrolyte is investigated. Quinoxaline shows the lowest redox potential (-0.97 V) in KOH supporting electrolyte, while when quinoxaline and ferrocyanide are used as the target active materials, the cell voltage of this redox combination is 1.3 V. When the single cell tests of AORFBs using 0.1 M active materials in 1 M KCl supporting electrolyte and Nafion 117 membrane are implemented, it does not work properly because of the side reaction of quinoxaline. To reduce or prevent the side reaction of quinoxaline, the two types of additives are considered. They are the potassium sulfate as electrophile additive and potassium iodide as nucleophilie additive. Of them, when the single cell tests of AORFBs using potassium iodide as additive dissolved in quinoxaline solution are performed, the capacity loss rate is reduced to $0.21Ah{\cdot}L^{-1}per\;cycle$ and it is better than that of the single cell test of AORFB operated without additive ($0.29Ah{\cdot}L^{-1}per\;cycle$).

Enhanced stability of NADH/dehydrogenase mixture system by water-soluble phospholipid polymers

  • Fukazawa, Kyoko;Ishihara, Kazuhiko
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.1
    • /
    • pp.37-46
    • /
    • 2016
  • To maintain activity in a coenzyme/enzyme mixture system, such as ${\beta}$-nicotinamide adenine dinucleotide (NADH)/dehydrogenase, the water-soluble 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers as an additive were synthesized and investigated for their stabilizing function. The inhibitor for the NADH/dehydrogenase reaction was spontaneously formed when the NADH was stored in the dehydrogenase solution. Therefore, we hypothesized that if the additive polymer could interact with an inhibitor without any adverse effect on the dehydrogenase, the activity in the NADH/dehydrogenase mixture could be maintained. We selected lactose dehydrogenase (LDH) as the enzyme, and the NADH was dissolved and incubated at $37^{\circ}C$ in the LDH solution containing the polymers. The phospholipid polymers used in this study were poly(MPC) (PMPC), poly(MPC-co-3-trimethylammonium-2-hydroxypropyl methacrylate chloride) (PMQ) and poly[MPC-co-potassium 3-methacryloyloxypropyl sulfonate ($MSO_3$)] ($PMMSO_3$). The poly($MSO_3$) was used as a reference. For the PMQ and $PMSO_3$ aqueous solutions, the activity of the NADH/LDH mixture system decreased with incubation time as the same level or lower than that in the Tris buffered solution in the absence of the polymers. However, for the poly($MPC-co-MSO_3$) ($PMMSO_3$) aqueous solution, the activity of the NADH/LDH mixed system was six times higher than that in the buffered solution even after a 3-days incubation. The LDH activity was 1.5-1.8 times higher in the presence of the $PMMSO_3$ compared with that in the $PMSO_3$ solution. The mixture of two polymers, poly(MPC) and poly($MSO_3$), did not produce any stabilization. Thus, both the MPC and $MSO_3$ units in the polymer chain had important and cooperative effects for stabilizing the NADH/LDH mixture.

Screening of a Natural Feed Additive Having Anti-viral Activity against Influenza A/H5N1 (안전한 닭고기 생산을 위한 고병원성 조류인플루엔자 A/H5N1에 항바이러스 효과를 가진 천연 사료첨가제의 탐색)

  • Lee, Jang-Hyun;Kwon, Su-Min;Seo, Sang-Heui;Park, Young-Seo;Kim, Young-Bong;Kim, Soo-Ki;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.28 no.4
    • /
    • pp.512-516
    • /
    • 2008
  • To search for anit-H5N1 influenza virus agent, the anti-viral activity of methanol and aqueous extracts from thirty medicinal plants were examined in this study. The plant material (30 g) was extracted with methanol (300 mL) for 24 hr at room temperature. Methanol extracts were filtered and evaporated, then freeze-dried. Aqueous extracts were prepared with dried plant material (30 g) and hot distilled water (300 mL). After 3 hr, the aqueous extracts were filtered and evaporated, then lyophilized. Extracts prepared from different plants were tested the antiviral activity against influenza viruses [A/vietnam/1194/04 (H5N1)-NIBRG-14] using the hemagglutination (HA) assay. Among the test plants, Asarum sieboldii was found to be a potent inhibitor of H5N1 influenza virus in MDCK cell culture. Virus titers were 7 log, whereas with methanol extract of Asarum sieboldii for 48 hr titers were 3 log, indicating that methanol extract of Asarum sieboldii inhibited the H5N1 influenza viruses from the infected cells.

Characteristic of the Formation and Adhesion of Ice on a Cooling Surface by a Stirring Aqueous Solution

  • Kang, Chae-Dong;Seung, Hyun;Hong, Hi-Ki
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.3
    • /
    • pp.110-117
    • /
    • 2006
  • Ice adhesion or cohesion leads to the decrease of the performance of ice making system, especially to dynamic type ice thermal storage system (DISS) which mainly forms ice from the flow of an aqueous solution. The ice adhesion is influenced by various parameters associated with operating or geometric condition. In this study, the influence on an adhesion of ice to the characteristic of cooling surface and to composition of an aqueous solution was fundamentally observed by using batch type cooling device,. a beaker. Three patterns of solution in each beaker were cooled with brine. Moreover, the characteristic of cooling surface on each beaker was distinguished to coating materials. Stirring power as a degree of the ice adhesion was measured. The stirring power to cooling heat transfer rate in each beaker was compared. As a result, the lowest stirring power of 8.9 W with non-adhesion of ice, was shown in the case of the aqueous solution of EG(4) + PG(1.5) + 1,6HD(1.5). in PE coating beaker.

Extinguishing Characteristics of Cooking Oil Fire by Water Mist added with AFFF Agent (수성막포 약제를 첨가한 미분무수의 식용유 화재 소화특성)

  • Shin, Chang-Sub;Kim, Seong-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.21-27
    • /
    • 2009
  • Effective way of cooking oil fire extinguishment is using water mist system which has cooling and smothering effects. Low pressure water mist system has advantage because it is compatible with existing sprinkler systems. To increase the effectiveness of low pressure water mist system, additives can be used which increase the momentum of water particle and the chemical effect. In this experiment, aqueous film forming form(AFFF) agent is used as additive and the effect of additive concentration and water pressure are experimented. For the extinguishment of cooking oil fire such as soybean and olive oils, AFFF agent is effective and can decrease the fire extinguishing time and water consumption.

Experimental investigation of heat transfer enhancement in horizontal bundle tubes on absorber (수평관군 흡수기의 전열촉진에 관한 실험적 연구)

  • Moon, Choon-Geun;Seol, Won-Sil;Kim, Jae-Dol;Yoon, Jung-In
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.328-334
    • /
    • 2000
  • This research was concerned with the enhancement of heat transfer by surfactant added to the aqueous solution of LiBr. Different horizontal tubes were tested with and without an additive of normal octyl alcohol. The test tubes were a bare tube, floral tube, hydrophilic tube. The additive concentration was about $0.05{\sim}5.5mass%$. The heat transfer coefficient was measured as a function of solution flow rate in the range of $0.01{\sim}0.034 kg/ms$. The experimental result were compared with cases without surfactant. The enhancement of heat transfer by Marangoni convection effect which was generated by addition of the surfactant is observed in each test tube.

  • PDF

Influence of surfactant on heat transfer of air-cooled vertical absorber (공냉식 수직 흡수기의 열전달에 미치는 계면활성제의 영향)

  • 윤정인;권오경;문춘근
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.740-748
    • /
    • 1999
  • This research was concerned with the enhancement of heat transfer by surfactant added to the aqueous solution of LiBr. Different vertical tubes were tested with and without an additive of normal octyl alcohol. The test tubes were a bare inner surface, groove inner surface, corrugated inner surface and spring inserted inner surface tubes. The additive concentration was about 0.08 mass%. The heat transfer coefficient was measured as a function of film Reynolds number in the range of 20~200. Experiments were tarried out at higher cooling water temperature of $35^{\circ}C$ to simulate an air cooling condition for several kinds of absorber testing tubes. The experimental results were compared with cases without surfactant. The enhancement of heat transfer by Marangoni convection effect which was generated by addition of the surfactant is observed in each test tube. Especially, it is clarified that the tube with an inserted spring has the highest enhancement effect.

  • PDF

Low Molecular Weight PEI Conjugated Pluronic Copolymer: Useful Additive for Enhancing Gene Transfection Efficiency

  • Cho Kyung-Chul;Choi Seung-Ho;Park Tae-Gwan
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.348-353
    • /
    • 2006
  • For enhancing the gene delivery efficiency of polyplexes, a new formulation was developed using PEI conjugated Pluronic F127 copolymer as an effective additive. Low molecular weight, branched polyethylenimine Mw 600 (LMW BPEI 600) was conjugated to the terminal end of Pluronic F127. The PEI-modified Pluronic copolymers formed a micellar structure in aqueous solution, similar to that of unmodified Pluronic copolymer. PEI modification of Pluronic copolymer increased the size of micelles while concomitantly raising the critical micelle concentration (CMC). The PEI-modified Pluronic copolymer was used as a micellar additive to enhance the gene transfection efficiency of pre-formulated polyelectrolyte complex nanoparticles composed of luciferase plasmid DNA and branched PEI Mw 25k (BPEI 25k) or polylysine Mw 39k (PLL 39k). The luciferase gene expression levels were significantly enhanced by the addition of the BPEI-modified Pluronic copolymer for the two formulations of BPEl and PLL polyplexes. The results indicated that the BPEI-modified Pluronic copolymer micelles ionically interacted on the surface of DNA/BPEI (PLL) polyplexes which might facilitate cellular uptake process.

Incorporation of Graphitic Porous Carbon for Synthesis of Composite Carbon Aerogel with Enhanced Electrochemical Performance

  • Singh, Ashish;Kohli, D.K.;Singh, Rashmi;Bhartiya, Sushmita;Singh, M.K.;Karnal, A.K.
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.204-211
    • /
    • 2021
  • We report, synthesis of high surface area composite carbon aerogel using additive based polymerization technique by incorporating graphitic porous carbon as additive. This additive was separately prepared using sol-gel polymerization of resorcinol-furfuraldehyde in iso-propyl alcohol medium at much above the routine gelation temperature to yield porous carbon (CA-IPA) having graphitic layered morphology. CA-IPA exhibited a unique combination of meso-pore dominated surface area (~ 700 m2/g) and good conductivity of ~ 300 S/m. The composite carbon aerogel (CCA) was synthesized by traditional aqueous medium based resorcinol-formaldehyde gelation with CA-IPA as additive. The presence of CA-IPA favored enhanced meso-porosity as well as contributed to improvement in bulk conductivity. Based on the surface area characteristics, CCA-8 composition having 8% additive was found to be optimum. It showed specific surface area of ~ 2056 m2/g, mesopore area of 827 m2/g and electrical conductivity of 180 S/m. The electrode formed with CCA-8 showed improved electrochemical behavior, with specific capacitance of 148 F/g & ESR < 1 Ω, making it a better choice as super capacitor for energy storage applications.